3czf
Crystal structure of HLA-B*2709 complexed with the glucagon receptor (GR) peptide (residues 412-420)Crystal structure of HLA-B*2709 complexed with the glucagon receptor (GR) peptide (residues 412-420)
Structural highlights
Disease[1B27_HUMAN] Defects in HLA-B are a cause of susceptibility to spondyloarthropathy type 1 (SPDA1) [MIM:106300]. It is a chronic rheumatic disease with multifactorial inheritance. It includes a spectrum of related disorders comprising ankylosing spondylitis, a subset of psoriatic arthritis, reactive arthritis (e.g. Reiter syndrome), arthritis associated with inflammatory bowel disease and undifferentiated spondyloarthropathy. These disorders may occur simultaneously or sequentially in the same patient, probably representing various phenotypic expressions of the same disease. Ankylosing spondylitis is the form of rheumatoid arthritis affecting the spine and is considered the prototype of seronegative spondyloarthropathies. It produces pain and stiffness as a result of inflammation of the sacroiliac, intervertebral, and costovertebral joints. Note=In the Greek Cypriot population, a restricted number of HLA-B27 subtypes are associated with ankylosing spondylitis and other B27-related diseases and an elevated frequency of the B*2702 allele in ankylosing spondylitis patients is identified. The allele B*2707 seems to have a protective role in this population because it was found only in the healthy controls.[1] [B2MG_HUMAN] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:241600]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.[2] Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] Function[1B27_HUMAN] Involved in the presentation of foreign antigens to the immune system. [GLR_HUMAN] This is a receptor for glucagon which plays a central role in regulating the level of blood glucose by controlling the rate of hepatic glucose production and insulin secretion. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase and also a phosphatidylinositol-calcium second messenger system. [B2MG_HUMAN] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe development of autoimmune disorders is incompletely understood. Inefficient thymic T cell selection against self-peptides presented by major histocompatibility antigens (HLA in humans) may contribute to the emergence of auto-reactive effector cells, and molecular mimicry between foreign and self-peptides could promote T cell cross-reactivity. A pair of class I subtypes, HLA-B2705 and HLA-B2709, have previously been intensely studied, because they are distinguished from each other only by a single amino acid exchange at the floor of the peptide-binding groove, yet are differentially associated with the autoinflammatory disorder ankylosing spondylitis. Using X-ray crystallography in combination with ensemble refinement, we find that the non-disease-associated subtype HLA-B2709, when presenting the self-peptide pGR (RRRWHRWRL), exhibits elevated conformational dynamics, and the complex can also be recognized by T cells. Both features are not observed in case of the sequence-related self-peptide pVIPR (RRKWRRWHL) in complex with this subtype, and T cell cross-reactivity between pGR, pVIPR, and the viral peptide pLMP2 (RRRWRRLTV) is only rarely observed. The disease-associated subtype HLA-B2705, however, exhibits extensive conformational flexibility in case of the three complexes, all of which are also recognized by frequently occurring cross-reactive T cells. A comparison of the structural and dynamic properties of the six HLA-B27 complexes, together with their individual ability to interact with T cells, permits us to correlate the flexibility of HLA-B27 complexes with effector cell reactivity. The results suggest the existence of an inverse relationship between conformational plasticity of peptide-HLA-B27 complexes and the efficiency of negative selection of self-reactive cells within the thymus. Conformational Plasticity of HLA-B27 Molecules Correlates Inversely With Efficiency of Negative T Cell Selection.,Loll B, Ruckert C, Uchanska-Ziegler B, Ziegler A Front Immunol. 2020 Feb 11;11:179. doi: 10.3389/fimmu.2020.00179. eCollection, 2020. PMID:32117305[16] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|