Crystal Structure of the Antithrombin-S195A Factor Xa-Pentasaccharide ComplexCrystal Structure of the Antithrombin-S195A Factor Xa-Pentasaccharide Complex

Structural highlights

2gd4 is a 6 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , , , ,
NonStd Res:
Gene:F10 (HUMAN), SERPINC1, AT3 (HUMAN)
Activity:Coagulation factor Xa, with EC number 3.4.21.6
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[FA10_HUMAN] Defects in F10 are the cause of factor X deficiency (FA10D) [MIM:227600]. A hemorrhagic disease with variable presentation. Affected individuals can manifest prolonged nasal and mucosal hemorrhage, menorrhagia, hematuria, and occasionally hemarthrosis. Some patients do not have clinical bleeding diathesis.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [ANT3_HUMAN] Defects in SERPINC1 are the cause of antithrombin III deficiency (AT3D) [MIM:613118]. AT3D is an important risk factor for hereditary thrombophilia, a hemostatic disorder characterized by a tendency to recurrent thrombosis. AT3D is classified into 4 types. Type I: characterized by a 50% decrease in antigenic and functional levels. Type II: has defects affecting the thrombin-binding domain. Type III: alteration of the heparin-binding domain. Plasma AT-III antigen levels are normal in type II and III. Type IV: consists of miscellaneous group of unclassifiable mutations.[18] [:][19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [:][40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52]

Function

[FA10_HUMAN] Factor Xa is a vitamin K-dependent glycoprotein that converts prothrombin to thrombin in the presence of factor Va, calcium and phospholipid during blood clotting. [ANT3_HUMAN] Most important serine protease inhibitor in plasma that regulates the blood coagulation cascade. AT-III inhibits thrombin, matriptase-3/TMPRSS7, as well as factors IXa, Xa and XIa. Its inhibitory activity is greatly enhanced in the presence of heparin.[53]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Regulation of blood coagulation is critical for maintaining blood flow, while preventing excessive bleeding or thrombosis. One of the principal regulatory mechanisms involves heparin activation of the serpin antithrombin (AT). Inhibition of several coagulation proteases is accelerated by up to 10,000-fold by heparin, either through bridging AT and the protease or by inducing allosteric changes in the properties of AT. The anticoagulant effect of short heparin chains, including the minimal AT-specific pentasaccharide, is mediated exclusively through the allosteric activation of AT towards efficient inhibition of coagulation factors (f) IXa and Xa. Here we present the crystallographic structure of the recognition (Michaelis) complex between heparin-activated AT and S195A fXa, revealing the extensive exosite contacts that confer specificity. The heparin-induced conformational change in AT is required to allow simultaneous contacts within the active site and two distinct exosites of fXa (36-loop and the autolysis loop). This structure explains the molecular basis of protease recognition by AT, and the mechanism of action of the important therapeutic low-molecular-weight heparins.

Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation.,Johnson DJ, Li W, Adams TE, Huntington JA EMBO J. 2006 May 3;25(9):2029-37. Epub 2006 Apr 13. PMID:16619025[54]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Reddy SV, Zhou ZQ, Rao KJ, Scott JP, Watzke H, High KA, Jagadeeswaran P. Molecular characterization of human factor XSan Antonio. Blood. 1989 Oct;74(5):1486-90. PMID:2790181
  2. Watzke HH, Lechner K, Roberts HR, Reddy SV, Welsch DJ, Friedman P, Mahr G, Jagadeeswaran P, Monroe DM, High KA. Molecular defect (Gla+14----Lys) and its functional consequences in a hereditary factor X deficiency (factor X "Vorarlberg"). J Biol Chem. 1990 Jul 15;265(20):11982-9. PMID:1973167
  3. James HL, Girolami A, Fair DS. Molecular defect in coagulation factor XFriuli results from a substitution of serine for proline at position 343. Blood. 1991 Jan 15;77(2):317-23. PMID:1985698
  4. Marchetti G, Castaman G, Pinotti M, Lunghi B, Di Iasio MG, Ruggieri M, Rodeghiero F, Bernardi F. Molecular bases of CRM+ factor X deficiency: a frequent mutation (Ser334Pro) in the catalytic domain and a substitution (Glu102Lys) in the second EGF-like domain. Br J Haematol. 1995 Aug;90(4):910-5. PMID:7669671
  5. Bezeaud A, Miyata T, Helley D, Zeng YZ, Kato H, Aillaud MF, Juhan-Vague I, Guillin MC. Functional consequences of the Ser334-->Pro mutation in a human factor X variant (factor XMarseille). Eur J Biochem. 1995 Nov 15;234(1):140-7. PMID:8529633
  6. Kim DJ, Thompson AR, James HL. Factor XKetchikan: a variant molecule in which Gly replaces a Gla residue at position 14 in the light chain. Hum Genet. 1995 Feb;95(2):212-4. PMID:7860069
  7. Messier TL, Wong CY, Bovill EG, Long GL, Church WR. Factor X Stockton: a mild bleeding diathesis associated with an active site mutation in factor X. Blood Coagul Fibrinolysis. 1996 Jan;7(1):5-14. PMID:8845463
  8. Rudolph AE, Mullane MP, Porche-Sorbet R, Tsuda S, Miletich JP. Factor XSt. Louis II. Identification of a glycine substitution at residue 7 and characterization of the recombinant protein. J Biol Chem. 1996 Nov 8;271(45):28601-6. PMID:8910490
  9. Zama T, Murata M, Watanabe R, Yokoyama K, Moriki T, Ambo H, Murakami H, Kikuchi M, Ikeda Y. A family with hereditary factor X deficiency with a point mutation Gla32 to Gln in the Gla domain (factor X Tokyo). Br J Haematol. 1999 Sep;106(3):809-11. PMID:10468877
  10. Millar DS, Elliston L, Deex P, Krawczak M, Wacey AI, Reynaud J, Nieuwenhuis HK, Bolton-Maggs P, Mannucci PM, Reverter JC, Cachia P, Pasi KJ, Layton DM, Cooper DN. Molecular analysis of the genotype-phenotype relationship in factor X deficiency. Hum Genet. 2000 Feb;106(2):249-57. PMID:10746568
  11. Forberg E, Huhmann I, Jimenez-Boj E, Watzke HH. The impact of Glu102Lys on the factor X function in a patient with a doubly homozygous factor X deficiency (Gla14Lys and Glu102Lys). Thromb Haemost. 2000 Feb;83(2):234-8. PMID:10739379
  12. Simioni P, Vianello F, Kalafatis M, Barzon L, Ladogana S, Paolucci P, Carotenuto M, Dal Bello F, Palu G, Girolami A. A dysfunctional factor X (factor X San Giovanni Rotondo) present at homozygous and double heterozygous level: identification of a novel microdeletion (delC556) and missense mutation (Lys(408)-->Asn) in the factor X gene. A study of an Italian family. Thromb Res. 2001 Feb 15;101(4):219-30. PMID:11248282
  13. Vianello F, Lombardi AM, Boldrin C, Luni S, Girolami A. A new factor X defect (factor X Padua 3): a compound heterozygous between true deficiency (Gly(380)-->Arg) and an abnormality (Ser(334)-->Pro). Thromb Res. 2001 Nov 15;104(4):257-64. PMID:11728527
  14. Vianello F, Lombardi AM, Bello FD, Palu G, Zanon E, Girolami A. A novel type I factor X variant (factor X Cys350Phe) due to loss of a disulfide bond in the catalytic domain. Blood Coagul Fibrinolysis. 2003 Jun;14(4):401-5. PMID:12945883
  15. Isshiki I, Favier R, Moriki T, Uchida T, Ishihara H, Van Dreden P, Murata M, Ikeda Y. Genetic analysis of hereditary factor X deficiency in a French patient of Sri Lankan ancestry: in vitro expression study identified Gly366Ser substitution as the molecular basis of the dysfunctional factor X. Blood Coagul Fibrinolysis. 2005 Jan;16(1):9-16. PMID:15650540
  16. Al-Hilali A, Wulff K, Abdel-Razeq H, Saud KA, Al-Gaili F, Herrmann FH. Analysis of the novel factor X gene mutation Glu51Lys in two families with factor X-Riyadh anomaly. Thromb Haemost. 2007 Apr;97(4):542-5. PMID:17393015
  17. Chafa O, Tagzirt M, Tapon-Bretaudiere J, Reghis A, Fischer AM, LeBonniec BF. Characterization of a homozygous Gly11Val mutation in the Gla domain of coagulation factor X. Thromb Res. 2009 May;124(1):144-8. doi: 10.1016/j.thromres.2008.11.018. Epub 2009, Jan 10. PMID:19135706 doi:10.1016/j.thromres.2008.11.018
  18. Lindo VS, Kakkar VV, Learmonth M, Melissari E, Zappacosta F, Panico M, Morris HR. Antithrombin-TRI (Ala382 to Thr) causing severe thromboembolic tendency undergoes the S-to-R transition and is associated with a plasma-inactive high-molecular-weight complex of aggregated antithrombin. Br J Haematol. 1995 Mar;89(3):589-601. PMID:7734359
  19. Bock SC, Marrinan JA, Radziejewska E. Antithrombin III Utah: proline-407 to leucine mutation in a highly conserved region near the inhibitor reactive site. Biochemistry. 1988 Aug 9;27(16):6171-8. PMID:3191114
  20. Lane DA, Bayston T, Olds RJ, Fitches AC, Cooper DN, Millar DS, Jochmans K, Perry DJ, Okajima K, Thein SL, Emmerich J. Antithrombin mutation database: 2nd (1997) update. For the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1997 Jan;77(1):197-211. PMID:9031473
  21. Koide T, Odani S, Takahashi K, Ono T, Sakuragawa N. Antithrombin III Toyama: replacement of arginine-47 by cysteine in hereditary abnormal antithrombin III that lacks heparin-binding ability. Proc Natl Acad Sci U S A. 1984 Jan;81(2):289-93. PMID:6582486
  22. Chang JY, Tran TH. Antithrombin III Basel. Identification of a Pro-Leu substitution in a hereditary abnormal antithrombin with impaired heparin cofactor activity. J Biol Chem. 1986 Jan 25;261(3):1174-6. PMID:3080419
  23. Stephens AW, Thalley BS, Hirs CH. Antithrombin-III Denver, a reactive site variant. J Biol Chem. 1987 Jan 25;262(3):1044-8. PMID:3805013
  24. Devraj-Kizuk R, Chui DH, Prochownik EV, Carter CJ, Ofosu FA, Blajchman MA. Antithrombin-III-Hamilton: a gene with a point mutation (guanine to adenine) in codon 382 causing impaired serine protease reactivity. Blood. 1988 Nov;72(5):1518-23. PMID:3179438
  25. Erdjument H, Lane DA, Panico M, Di Marzo V, Morris HR. Single amino acid substitutions in the reactive site of antithrombin leading to thrombosis. Congenital substitution of arginine 393 to cysteine in antithrombin Northwick Park and to histidine in antithrombin Glasgow. J Biol Chem. 1988 Apr 25;263(12):5589-93. PMID:3162733
  26. Erdjument H, Lane DA, Panico M, Di Marzo V, Morris HR, Bauer K, Rosenberg RD. Antithrombin Chicago, amino acid substitution of arginine 393 to histidine. Thromb Res. 1989 Jun 15;54(6):613-9. PMID:2781509
  27. Borg JY, Brennan SO, Carrell RW, George P, Perry DJ, Shaw J. Antithrombin Rouen-IV 24 Arg----Cys. The amino-terminal contribution to heparin binding. FEBS Lett. 1990 Jun 18;266(1-2):163-6. PMID:2365065
  28. Gandrille S, Aiach M, Lane DA, Vidaud D, Molho-Sabatier P, Caso R, de Moerloose P, Fiessinger JN, Clauser E. Important role of arginine 129 in heparin-binding site of antithrombin III. Identification of a novel mutation arginine 129 to glutamine. J Biol Chem. 1990 Nov 5;265(31):18997-9001. PMID:2229057
  29. Austin RC, Rachubinski RA, Blajchman MA. Site-directed mutagenesis of alanine-382 of human antithrombin III. FEBS Lett. 1991 Mar 25;280(2):254-8. PMID:2013320
  30. Perry DJ, Daly M, Harper PL, Tait RC, Price J, Walker ID, Carrell RW. Antithrombin Cambridge II, 384 Ala to Ser. Further evidence of the role of the reactive centre loop in the inhibitory function of the serpins. FEBS Lett. 1991 Jul 22;285(2):248-50. PMID:1906811
  31. Olds RJ, Lane DA, Boisclair M, Sas G, Bock SC, Thein SL. Antithrombin Budapest 3. An antithrombin variant with reduced heparin affinity resulting from the substitution L99F. FEBS Lett. 1992 Apr 6;300(3):241-6. PMID:1555650
  32. Blajchman MA, Fernandez-Rachubinski F, Sheffield WP, Austin RC, Schulman S. Antithrombin-III-Stockholm: a codon 392 (Gly----Asp) mutation with normal heparin binding and impaired serine protease reactivity. Blood. 1992 Mar 15;79(6):1428-34. PMID:1547341
  33. Okajima K, Abe H, Maeda S, Motomura M, Tsujihata M, Nagataki S, Okabe H, Takatsuki K. Antithrombin III Nagasaki (Ser116-Pro): a heterozygous variant with defective heparin binding associated with thrombosis. Blood. 1993 Mar 1;81(5):1300-5. PMID:8443391
  34. Olds RJ, Lane DA, Beresford CH, Abildgaard U, Hughes PM, Thein SL. A recurrent deletion in the antithrombin gene, AT106-108(-6 bp), identified by DNA heteroduplex detection. Genomics. 1993 Apr;16(1):298-9. PMID:8486379 doi:http://dx.doi.org/10.1006/geno.1993.1184
  35. Emmerich J, Vidaud D, Alhenc-Gelas M, Chadeuf G, Gouault-Heilmann M, Aillaud MF, Aiach M. Three novel mutations of antithrombin inducing high-molecular-mass compounds. Arterioscler Thromb. 1994 Dec;14(12):1958-65. PMID:7981186
  36. Millar DS, Wacey AI, Ribando J, Melissari E, Laursen B, Woods P, Kakkar VV, Cooper DN. Three novel missense mutations in the antithrombin III (AT3) gene causing recurrent venous thrombosis. Hum Genet. 1994 Nov;94(5):509-12. PMID:7959685
  37. Jochmans K, Lissens W, Vervoort R, Peeters S, De Waele M, Liebaers I. Antithrombin-Gly 424 Arg: a novel point mutation responsible for type 1 antithrombin deficiency and neonatal thrombosis. Blood. 1994 Jan 1;83(1):146-51. PMID:8274732
  38. van Boven HH, Olds RJ, Thein SL, Reitsma PH, Lane DA, Briet E, Vandenbroucke JP, Rosendaal FR. Hereditary antithrombin deficiency: heterogeneity of the molecular basis and mortality in Dutch families. Blood. 1994 Dec 15;84(12):4209-13. PMID:7994035
  39. Bruce D, Perry DJ, Borg JY, Carrell RW, Wardell MR. Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen-VI (187 Asn-->Asp) J Clin Invest. 1994 Dec;94(6):2265-74. PMID:7989582 doi:http://dx.doi.org/10.1172/JCI117589
  40. Emmerich J, Chadeuf G, Alhenc-Gelas M, Gouault-Heilman M, Toulon P, Fiessinger JN, Aiach M. Molecular basis of antithrombin type I deficiency: the first large in-frame deletion and two novel mutations in exon 6. Thromb Haemost. 1994 Oct;72(4):534-9. PMID:7878627
  41. Okajima K, Abe H, Wagatsuma M, Okabe H, Takatsuki K. Antithrombin III Kumamoto II; a single mutation at Arg393-His increased the affinity of antithrombin III for heparin. Am J Hematol. 1995 Jan;48(1):12-8. PMID:7832187
  42. Ozawa T, Takikawa Y, Niiya K, Fujiwara T, Suzuki K, Sato S, Sakuragawa N. Antithrombin Morioka (Cys 95-Arg): a novel missense mutation causing type I antithrombin deficiency. Thromb Haemost. 1997 Feb;77(2):403. PMID:9157604
  43. Fitches AC, Appleby R, Lane DA, De Stefano V, Leone G, Olds RJ. Impaired cotranslational processing as a mechanism for type I antithrombin deficiency. Blood. 1998 Dec 15;92(12):4671-6. PMID:9845533
  44. Jochmans K, Lissens W, Seneca S, Capel P, Chatelain B, Meeus P, Osselaer JC, Peerlinck K, Seghers J, Slacmeulder M, Stibbe J, van de Loo J, Vermylen J, Liebaers I, De Waele M. The molecular basis of antithrombin deficiency in Belgian and Dutch families. Thromb Haemost. 1998 Sep;80(3):376-81. PMID:9759613
  45. Picard V, Bura A, Emmerich J, Alhenc-Gelas M, Biron C, Houbouyan-Reveillard LL, Molho P, Labatide-Alanore A, Sie P, Toulon P, Verdy E, Aiach M. Molecular bases of antithrombin deficiency in French families: identification of seven novel mutations in the antithrombin gene. Br J Haematol. 2000 Sep;110(3):731-4. PMID:10997988
  46. Niiya K, Kiguchi T, Dansako H, Fujimura K, Fujimoto T, Iijima K, Tanimoto M, Harada M. Two novel gene mutations in type I antithrombin deficiency. Int J Hematol. 2001 Dec;74(4):469-72. PMID:11794707
  47. Baud O, Picard V, Durand P, Duchemin J, Proulle V, Alhenc-Gelas M, Devictor D, Dreyfus M. Intracerebral hemorrhage associated with a novel antithrombin gene mutation in a neonate. J Pediatr. 2001 Nov;139(5):741-3. PMID:11713457 doi:10.1067/mpd.2001.118191
  48. Mushunje A, Zhou A, Huntington JA, Conard J, Carrell RW. Antithrombin 'DREUX' (Lys 114Glu): a variant with complete loss of heparin affinity. Thromb Haemost. 2002 Sep;88(3):436-43. PMID:12353073 doi:10.1267/THRO88030436
  49. Picard V, Dautzenberg MD, Villoutreix BO, Orliaguet G, Alhenc-Gelas M, Aiach M. Antithrombin Phe229Leu: a new homozygous variant leading to spontaneous antithrombin polymerization in vivo associated with severe childhood thrombosis. Blood. 2003 Aug 1;102(3):919-25. Epub 2003 Feb 20. PMID:12595305 doi:10.1182/blood-2002-11-3391
  50. Nagaizumi K, Inaba H, Amano K, Suzuki M, Arai M, Fukutake K. Five novel and four recurrent point mutations in the antithrombin gene causing venous thrombosis. Int J Hematol. 2003 Jul;78(1):79-83. PMID:12894857
  51. David D, Ribeiro S, Ferrao L, Gago T, Crespo F. Molecular basis of inherited antithrombin deficiency in Portuguese families: identification of genetic alterations and screening for additional thrombotic risk factors. Am J Hematol. 2004 Jun;76(2):163-71. PMID:15164384 doi:10.1002/ajh.20067
  52. Kuhli C, Jochmans K, Scharrer I, Luchtenberg M, Hattenbach LO. Retinal vein occlusion associated with antithrombin deficiency secondary to a novel G9840C missense mutation. Arch Ophthalmol. 2006 Aug;124(8):1165-9. PMID:16908819 doi:10.1001/archopht.124.8.1165
  53. Szabo R, Netzel-Arnett S, Hobson JP, Antalis TM, Bugge TH. Matriptase-3 is a novel phylogenetically preserved membrane-anchored serine protease with broad serpin reactivity. Biochem J. 2005 Aug 15;390(Pt 1):231-42. PMID:15853774 doi:BJ20050299
  54. Johnson DJ, Li W, Adams TE, Huntington JA. Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. EMBO J. 2006 May 3;25(9):2029-37. Epub 2006 Apr 13. PMID:16619025

2gd4, resolution 3.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA