1k8a
Co-crystal structure of Carbomycin A bound to the 50S ribosomal subunit of Haloarcula marismortuiCo-crystal structure of Carbomycin A bound to the 50S ribosomal subunit of Haloarcula marismortui
Structural highlights
Function[RL13_HALMA] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [RL24_HALMA] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [RL6_HALMA] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] [RL32_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [RL19E_HALMA] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [RL24E_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [RL21_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [RL44E_HALMA] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [RL29_HALMA] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [RL15_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [RL18E_HALMA] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [RL39_HALMA] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [RL5_HALMA] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [RL31_HALMA] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [RL37_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [RL2_HALMA] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [RLA0_HALMA] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [RL14_HALMA] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [RL18_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [RL23_HALMA] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [RL7A_HALMA] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [RL3_HALMA] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] [RL30_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [RL22_HALMA] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [RL4_HALMA] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCrystal structures of the Haloarcula marismortui large ribosomal subunit complexed with the 16-membered macrolide antibiotics carbomycin A, spiramycin, and tylosin and a 15-membered macrolide, azithromycin, show that they bind in the polypeptide exit tunnel adjacent to the peptidyl transferase center. Their location suggests that they inhibit protein synthesis by blocking the egress of nascent polypeptides. The saccharide branch attached to C5 of the lactone rings extends toward the peptidyl transferase center, and the isobutyrate extension of the carbomycin A disaccharide overlaps the A-site. Unexpectedly, a reversible covalent bond forms between the ethylaldehyde substituent at the C6 position of the 16-membered macrolides and the N6 of A2103 (A2062, E. coli). Mutations in 23S rRNA that result in clinical resistance render the binding site less complementary to macrolides. The structures of four macrolide antibiotics bound to the large ribosomal subunit.,Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA Mol Cell. 2002 Jul;10(1):117-28. PMID:12150912[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|