4raq

From Proteopedia
Revision as of 12:43, 1 May 2019 by OCA (talk | contribs)
Jump to navigation Jump to search

Aza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their pro-drugs as antimalarial agentsAza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their pro-drugs as antimalarial agents

Structural highlights

4raq is a 4 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:HPRT1, HPRT (HUMAN)
Activity:Hypoxanthine phosphoribosyltransferase, with EC number 2.4.2.8
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[HPRT_HUMAN] Defects in HPRT1 are the cause of Lesch-Nyhan syndrome (LNS) [MIM:300322]. LNS is characterized by complete lack of enzymatic activity that results in hyperuricemia, choreoathetosis, mental retardation, and compulsive self-mutilation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Defects in HPRT1 are the cause of gout HPRT-related (GOUT-HPRT) [MIM:300323]; also known as HPRT-related gout or Kelley-Seegmiller syndrome. Gout is characterized by partial enzyme activity and hyperuricemia.[11] [12] [13] [14] [15] [16] [:]

Function

[HPRT_HUMAN] Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5-phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway.

Publication Abstract from PubMed

Hypoxanthine-guanine-[xanthine] phosphoribosyltransferase (HG[X]PRT) is considered an important target for antimalarial chemotherapy as it is the only pathway for the synthesis of the purine nucleoside monophosphates required for DNA/RNA production. Thus, inhibition of this enzyme should result in cessation of replication. The aza-acyclic nucleoside phosphonates (aza-ANPs) are good inhibitors of Plasmodium falciparum HGXPRT (PfHGXPRT), with Ki values as low as 0.08 and 0.01 muM for Plasmodium vivax HGPRT (PvHGPRT). Prodrugs of these aza-ANPs exhibit antimalarial activity against Pf lines with IC50 values (0.8-6.0 muM) and have low cytotoxicity against human cells. Crystal structures of six of these compounds in complex with human HGPRT have been determined. These suggest that the different affinities of these aza-ANPs could be due to the flexibility of the loops surrounding the active site as well as the flexibility of the inhibitors, allowing them to adapt to fit into three binding pockets of the enzyme(s).

Aza-acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group As Inhibitors of the Human, Plasmodium falciparum and vivax 6-Oxopurine Phosphoribosyltransferases and Their Prodrugs As Antimalarial Agents.,Keough DT, Hockova D, Janeba Z, Wang T, Naesens L, Edstein MD, Chavchich M, Guddat LW J Med Chem. 2014 Dec 24. PMID:25494538[17]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wilson JM, Kelley WN. Molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in a patient with the Lesch-Nyhan syndrome. J Clin Invest. 1983 May;71(5):1331-5. PMID:6853716
  2. Davidson BL, Pashmforoush M, Kelley WN, Palella TD. Genetic basis of hypoxanthine guanine phosphoribosyltransferase deficiency in a patient with the Lesch-Nyhan syndrome (HPRTFlint). Gene. 1988 Mar 31;63(2):331-6. PMID:3384338
  3. Davidson BL, Palella TD, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase: a single nucleotide substitution in cDNA clones isolated from a patient with Lesch-Nyhan syndrome (HPRTMidland). Gene. 1988 Aug 15;68(1):85-91. PMID:3265398
  4. Fujimori S, Davidson BL, Kelley WN, Palella TD. Identification of a single nucleotide change in the hypoxanthine-guanine phosphoribosyltransferase gene (HPRTYale) responsible for Lesch-Nyhan syndrome. J Clin Invest. 1989 Jan;83(1):11-3. PMID:2910902 doi:http://dx.doi.org/10.1172/JCI113846
  5. Gibbs RA, Nguyen PN, Edwards A, Civitello AB, Caskey CT. Multiplex DNA deletion detection and exon sequencing of the hypoxanthine phosphoribosyltransferase gene in Lesch-Nyhan families. Genomics. 1990 Jun;7(2):235-44. PMID:2347587
  6. Skopek TR, Recio L, Simpson D, Dallaire L, Melancon SB, Ogier H, O'Neill JP, Falta MT, Nicklas JA, Albertini RJ. Molecular analyses of a Lesch-Nyhan syndrome mutation (hprtMontreal) by use of T-lymphocyte cultures. Hum Genet. 1990 Jun;85(1):111-6. PMID:2358296
  7. Gordon RB, Sculley DG, Dawson PA, Beacham IR, Emmerson BT. Identification of a single nucleotide substitution in the coding sequence of in vitro amplified cDNA from a patient with partial HPRT deficiency (HPRTBRISBANE). J Inherit Metab Dis. 1990;13(5):692-700. PMID:2246854
  8. Tarle SA, Davidson BL, Wu VC, Zidar FJ, Seegmiller JE, Kelley WN, Palella TD. Determination of the mutations responsible for the Lesch-Nyhan syndrome in 17 subjects. Genomics. 1991 Jun;10(2):499-501. PMID:2071157
  9. Burgemeister R, Rotzer E, Gutensohn W, Gehrke M, Schiel W. Identification of a new missense mutation in exon 2 of the human hypoxanthine phosphoribosyltransferase gene (HPRTIsar): a further example of clinical heterogeneity in HPRT deficiencies. Hum Mutat. 1995;5(4):341-4. PMID:7627191 doi:http://dx.doi.org/10.1002/humu.1380050413
  10. Liu G, Aral B, Zabot MT, Kamoun P, Ceballos-Picot I. The molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in French families; report of two novel mutations. Hum Mutat. 1998;Suppl 1:S88-90. PMID:9452051
  11. Wilson JM, Kobayashi R, Fox IH, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1983 May 25;258(10):6458-60. PMID:6853490
  12. Wilson JM, Tarr GE, Kelley WN. Human hypoxanthine (guanine) phosphoribosyltransferase: an amino acid substitution in a mutant form of the enzyme isolated from a patient with gout. Proc Natl Acad Sci U S A. 1983 Feb;80(3):870-3. PMID:6572373
  13. Wilson JM, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase. Structural alteration in a dysfunctional enzyme variant (HPRTMunich) isolated from a patient with gout. J Biol Chem. 1984 Jan 10;259(1):27-30. PMID:6706936
  14. Cariello NF, Scott JK, Kat AG, Thilly WG, Keohavong P. Resolution of a missense mutant in human genomic DNA by denaturing gradient gel electrophoresis and direct sequencing using in vitro DNA amplification: HPRT Munich. Am J Hum Genet. 1988 May;42(5):726-34. PMID:3358423
  15. Davidson BL, Chin SJ, Wilson JM, Kelley WN, Palella TD. Hypoxanthine-guanine phosphoribosyltransferase. Genetic evidence for identical mutations in two partially deficient subjects. J Clin Invest. 1988 Dec;82(6):2164-7. PMID:3198771 doi:http://dx.doi.org/10.1172/JCI113839
  16. Davidson BL, Pashmforoush M, Kelley WN, Palella TD. Human hypoxanthine-guanine phosphoribosyltransferase deficiency. The molecular defect in a patient with gout (HPRTAshville). J Biol Chem. 1989 Jan 5;264(1):520-5. PMID:2909537
  17. Keough DT, Hockova D, Janeba Z, Wang T, Naesens L, Edstein MD, Chavchich M, Guddat LW. Aza-acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group As Inhibitors of the Human, Plasmodium falciparum and vivax 6-Oxopurine Phosphoribosyltransferases and Their Prodrugs As Antimalarial Agents. J Med Chem. 2014 Dec 24. PMID:25494538 doi:http://dx.doi.org/10.1021/jm501416t

4raq, resolution 2.53Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA