4md7
Crystal Structure of full-length symmetric CK2 holoenzymeCrystal Structure of full-length symmetric CK2 holoenzyme
Structural highlights
Function[CSK2B_HUMAN] Participates in Wnt signaling (By similarity). Plays a complex role in regulating the basal catalytic activity of the alpha subunit.[1] [2] [CSK21_HUMAN] Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine. Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection. May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response. During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage. Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation. Can also negatively regulate apoptosis. Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3. Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8. Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV. Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, SRF, MAX, JUN, FOS, MYC and MYB. Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function. Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1. Acts as an ectokinase that phosphorylates several extracellular proteins. During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV.[3] [4] [5] [6] Publication Abstract from PubMedCK2 is a protein kinase essential for cell viability whose activity is altered in several cancers. Its mechanisms of regulation differ from those common to other eukaryotic protein kinases and are not entirely established yet. Here we present crystal structures of the monomeric form of the alpha2beta2 holoenzyme that allow refining a formerly proposed structural model for activity regulation by oligomerization. Previous crystal structures of the CK2 holoenzyme show an asymmetric arrangement of the two alpha catalytic subunits around the obligate beta2 regulatory subunits. Asymmetric alpha2beta2 tetramers are organized in trimeric rings that correspond to inactive forms of the enzyme. The new crystal structures presented here reveal the symmetric architecture of the isolated active tetramers. The dimension and the nature of the alpha/beta interfaces configure the holoenzyme as a strong complex that does not spontaneously dissociate in solution, in accordance with the low dissociation constant ( approximately 4 nM). Active Form of the Protein Kinase CK2 alphabeta Holoenzyme Is a Strong Complex with Symmetric Architecture.,Lolli G, Ranchio A, Battistutta R ACS Chem Biol. 2013 Nov 11. PMID:24175891[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|