1tx4
RHO/RHOGAP/GDP(DOT)ALF4 COMPLEXRHO/RHOGAP/GDP(DOT)ALF4 COMPLEX
Structural highlights
Function[RHG01_HUMAN] GTPase activator for the Rho, Rac and Cdc42 proteins, converting them to the putatively inactive GDP-bound state. Cdc42 seems to be the preferred substrate. [RHOA_HUMAN] Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers. Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis. Plays an essential role in cleavage furrow formation. Required for the apical junction formation of keratinocyte cell-cell adhesion. Serves as a target for the yopT cysteine peptidase from Yersinia pestis, vector of the plague, and Yersinia pseudotuberculosis, which causes gastrointestinal disorders. Stimulates PKN2 kinase activity. May be an activator of PLCE1. Activated by ARHGEF2, which promotes the exchange of GDP for GTP. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity. In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization.[1] [2] [3] [4] [5] [6] [7] [8] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedSmall G proteins of the Rho family, which includes Rho, Rac and Cdc42Hs, regulate phosphorylation pathways that control a range of biological functions including cytoskeleton formation and cell proliferation. They operate as molecular switches, cycling between the biologically active GTP-bound form and the inactive GDP-bound state. Their rate of hydrolysis of GTP to GDP by virtue of their intrinsic GTPase activity is slow, but can be accelerated by up to 10(5)-fold through interaction with rhoGAP, a GTPase-activating protein that stimulates Rho-family proteins. As such, rhoGAP plays a crucial role in regulating Rho-mediated signalling pathways. Here we report the crystal structure of RhoA and rhoGAP complexed with the transition-state analogue GDP.AlF4- at 1.65 A resolution. There is a rotation of 20 degrees between the Rho and rhoGAP proteins in this complex when compared with the ground-state complex Cdc42Hs.GMPPNP/rhoGAP, in which Cdc42Hs is bound to the non-hydrolysable GTP analogue GMPPNP. Consequently, in the transition state complex but not in the ground state, the rhoGAP domain contributes a residue, Arg85(GAP) directly into the active site of the G protein. We propose that this residue acts to stabilize the transition state of the GTPase reaction. RhoGAP also appears to function by stabilizing several regions of RhoA that are important in signalling the hydrolysis of GTP. Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue.,Rittinger K, Walker PA, Eccleston JF, Smerdon SJ, Gamblin SJ Nature. 1997 Oct 16;389(6652):758-62. PMID:9338791[9] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|