3ccv

From Proteopedia
Revision as of 10:35, 31 July 2019 by OCA (talk | contribs)
Jump to navigation Jump to search

Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation G2616AStructure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation G2616A

Structural highlights

3ccv is a 30 chain structure with sequence from Haloarcula marismortui. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , ,
NonStd Res:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[RL14_HALMA] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [RL24E_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [RLA0_HALMA] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [RL3_HALMA] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] [RL21_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [RL29_HALMA] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [RL2_HALMA] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [RL22_HALMA] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [RL30_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [RL19E_HALMA] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [RL44E_HALMA] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [RL7A_HALMA] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [RL37_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [RL32_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [RL39_HALMA] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [RL4_HALMA] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A] [RL11_HALMA] This protein binds directly to 23S ribosomal RNA (By similarity).[HAMAP-Rule:MF_00736_A] [RL15_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [RL18_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [RL18E_HALMA] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [RL24_HALMA] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [RL10_HALMA] This is 1 of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Modeling places the A and P site tRNAs in close proximity to this protein.[HAMAP-Rule:MF_00448] [RL5_HALMA] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [RL31_HALMA] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [RL13_HALMA] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [RL23_HALMA] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [RL6_HALMA] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Eleven mutations that make Haloarcula marismortui resistant to anisomycin, an antibiotic that competes with the amino acid side chains of aminoacyl tRNAs for binding to the A-site cleft of the large ribosomal unit, have been identified in 23S rRNA. The correlation observed between the sensitivity of H. marismortui to anisomycin and the affinity of its large ribosomal subunits for the drug indicates that its response to anisomycin is determined primarily by the binding of the drug to its large ribosomal subunit. The structures of large ribosomal subunits containing resistance mutations show that these mutations can be divided into two classes: (1) those that interfere with specific drug-ribosome interactions and (2) those that stabilize the apo conformation of the A-site cleft of the ribosome relative to its drug-bound conformation. The conformational effects of some mutations of the second kind propagate through the ribosome for considerable distances and are reversed when A-site substrates bind to the ribosome.

Mutations outside the anisomycin-binding site can make ribosomes drug-resistant.,Blaha G, Gurel G, Schroeder SJ, Moore PB, Steitz TA J Mol Biol. 2008 Jun 6;379(3):505-19. Epub 2008 Apr 8. PMID:18455733[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Blaha G, Gurel G, Schroeder SJ, Moore PB, Steitz TA. Mutations outside the anisomycin-binding site can make ribosomes drug-resistant. J Mol Biol. 2008 Jun 6;379(3):505-19. Epub 2008 Apr 8. PMID:18455733 doi:http://dx.doi.org/10.1016/j.jmb.2008.03.075

3ccv, resolution 2.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA