Mammalian 40S HCV-IRES complexMammalian 40S HCV-IRES complex

Structural highlights

5flx is a 35 chain structure with sequence from [1] and Oryctolagus cuniculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:DNA-(apurinic or apyrimidinic site) lyase, with EC number 4.2.99.18
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Disease

[RS19_HUMAN] Blackfan-Diamond disease. Diamond-Blackfan anemia 1 (DBA1) [MIM:105650]: A form of Diamond-Blackfan anemia, a congenital non-regenerative hypoplastic anemia that usually presents early in infancy. Diamond-Blackfan anemia is characterized by a moderate to severe macrocytic anemia, erythroblastopenia, and an increased risk of developing leukemia. 30 to 40% of Diamond-Blackfan anemia patients present with short stature and congenital anomalies, the most frequent being craniofacial (Pierre-Robin syndrome and cleft palate), thumb and urogenital anomalies. Note=The disease is caused by mutations affecting the gene represented in this entry.[1] [2] [3] [4] [5] [6] [7] [REFERENCE:18] [RS24_HUMAN] Blackfan-Diamond disease. Diamond-Blackfan anemia 3 (DBA3) [MIM:610629]: A form of Diamond-Blackfan anemia, a congenital non-regenerative hypoplastic anemia that usually presents early in infancy. Diamond-Blackfan anemia is characterized by a moderate to severe macrocytic anemia, erythroblastopenia, and an increased risk of developing leukemia. 30 to 40% of Diamond-Blackfan anemia patients present with short stature and congenital anomalies, the most frequent being craniofacial (Pierre-Robin syndrome and cleft palate), thumb and urogenital anomalies. Note=The disease is caused by mutations affecting the gene represented in this entry.[8] [RS14_HUMAN] Myelodysplastic syndrome associated with isolated del(5q) chromosome abnormality. [RS26_HUMAN] Blackfan-Diamond disease. Diamond-Blackfan anemia 10 (DBA10) [MIM:613309]: A form of Diamond-Blackfan anemia, a congenital non-regenerative hypoplastic anemia that usually presents early in infancy. Diamond-Blackfan anemia is characterized by a moderate to severe macrocytic anemia, erythroblastopenia, and an increased risk of malignancy. 30 to 40% of Diamond-Blackfan anemia patients present with short stature and congenital anomalies, the most frequent being craniofacial (Pierre-Robin syndrome and cleft palate), thumb and urogenital anomalies. Note=The disease is caused by mutations affecting the gene represented in this entry.[9] [RS7_HUMAN] Blackfan-Diamond disease. Diamond-Blackfan anemia 8 (DBA8) [MIM:612563]: A form of Diamond-Blackfan anemia, a congenital non-regenerative hypoplastic anemia that usually presents early in infancy. Diamond-Blackfan anemia is characterized by a moderate to severe macrocytic anemia, erythroblastopenia, and an increased risk of malignancy. 30 to 40% of Diamond-Blackfan anemia patients present with short stature and congenital anomalies, the most frequent being craniofacial (Pierre-Robin syndrome and cleft palate), thumb and urogenital anomalies. Note=The disease is caused by mutations affecting the gene represented in this entry.[10] [RS10_HUMAN] Blackfan-Diamond disease. Diamond-Blackfan anemia 9 (DBA9) [MIM:613308]: A form of Diamond-Blackfan anemia, a congenital non-regenerative hypoplastic anemia that usually presents early in infancy. Diamond-Blackfan anemia is characterized by a moderate to severe macrocytic anemia, erythroblastopenia, and an increased risk of malignancy. 30 to 40% of Diamond-Blackfan anemia patients present with short stature and congenital anomalies, the most frequent being craniofacial (Pierre-Robin syndrome and cleft palate), thumb and urogenital anomalies. Note=The disease is caused by mutations affecting the gene represented in this entry.[11] [RS17_HUMAN] Blackfan-Diamond disease. Diamond-Blackfan anemia 4 (DBA4) [MIM:612527]: A form of Diamond-Blackfan anemia, a congenital non-regenerative hypoplastic anemia that usually presents early in infancy. Diamond-Blackfan anemia is characterized by a moderate to severe macrocytic anemia, erythroblastopenia, and an increased risk of developing leukemia. 30 to 40% of Diamond-Blackfan anemia patients present with short stature and congenital anomalies, the most frequent being craniofacial (Pierre-Robin syndrome and cleft palate), thumb and urogenital anomalies. Note=The disease is caused by mutations affecting the gene represented in this entry.[12] [13]

Function

[RS27A_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[14] [15] Ribosomal protein S27a is a component of the 40S subunit of the ribosome.[16] [17] [RS19_HUMAN] Required for pre-rRNA processing and maturation of 40S ribosomal subunits.[18] [RS24_HUMAN] Required for processing of pre-rRNA and maturation of 40S ribosomal subunits.[19] [RSSA_HUMAN] Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Also functions as a cell surface receptor for laminin. Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways. May play a role in cell fate determination and tissue morphogenesis. Acts as a PPP1R16B-dependent substrate of PPP1CA. Also acts as a receptor for several other ligands, including the pathogenic prion protein, viruses, and bacteria.[20] [21] [22] [RS18_HUMAN] Located at the top of the head of the 40S subunit, it contacts several helices of the 18S rRNA (By similarity).[HAMAP-Rule:MF_01315] [RS3A_HUMAN] May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity).[HAMAP-Rule:MF_03122] [RS7_HUMAN] Required for rRNA maturation.[23] [RS10_HUMAN] Component of the 40S ribosomal subunit. [RS6_HUMAN] May play an important role in controlling cell growth and proliferation through the selective translation of particular classes of mRNA. [GBLP_HUMAN] Involved in the recruitment, assembly and/or regulation of a variety of signaling molecules. Interacts with a wide variety of proteins and plays a role in many cellular processes. Component of the 40S ribosomal subunit involved in translational repression. Binds to and stabilizes activated protein kinase C (PKC), increasing PKC-mediated phosphorylation. May recruit activated PKC to the ribosome, leading to phosphorylation of EIF6. Inhibits the activity of SRC kinases including SRC, LCK and YES1. Inhibits cell growth by prolonging the G0/G1 phase of the cell cycle. Enhances phosphorylation of BMAL1 by PRKCA and inhibits transcriptional activity of the BMAL1-CLOCK heterodimer. Facilitates ligand-independent nuclear translocation of AR following PKC activation, represses AR transactivation activity and is required for phosphorylation of AR by SRC. Modulates IGF1R-dependent integrin signaling and promotes cell spreading and contact with the extracellular matrix. Involved in PKC-dependent translocation of ADAM12 to the cell membrane. Promotes the ubiquitination and proteasome-mediated degradation of proteins such as CLEC1B and HIF1A. Required for VANGL2 membrane localization, inhibits Wnt signaling, and regulates cellular polarization and oriented cell division during gastrulation. Required for PTK2/FAK1 phosphorylation and dephosphorylation. Regulates internalization of the muscarinic receptor CHRM2. Promotes apoptosis by increasing oligomerization of BAX and disrupting the interaction of BAX with the anti-apoptotic factor BCL2L. Inhibits TRPM6 channel activity. Regulates cell surface expression of some GPCRs such as TBXA2R. Plays a role in regulation of FLT1-mediated cell migration. Binds to Y.pseudotuberculosis yopK which leads to inhibition of phagocytosis and survival of bacteria following infection of host cells. Enhances phosphorylation of HIV-1 Nef by PKCs. Promotes migration of breast carcinoma cells by binding to and activating RHOA.[24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42]

Publication Abstract from PubMed

Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo-EM reconstructions of the ribosome 80S- and 40S-bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S*HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 A for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P-site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA-driven translation initiation.

Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA.,Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A, Hilal T, Sprink T, Yamamoto K, Mielke T, Burger J, Shaikh TR, Dabrowski M, Hildebrand PW, Scheerer P, Spahn CM EMBO J. 2015 Dec 14;34(24):3042-58. doi: 10.15252/embj.201592469. Epub 2015 Nov, 24. PMID:26604301[43]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Angelini M, Cannata S, Mercaldo V, Gibello L, Santoro C, Dianzani I, Loreni F. Missense mutations associated with Diamond-Blackfan anemia affect the assembly of ribosomal protein S19 into the ribosome. Hum Mol Genet. 2007 Jul 15;16(14):1720-7. Epub 2007 May 20. PMID:17517689 doi:ddm120
  2. Da Costa L, Tchernia G, Gascard P, Lo A, Meerpohl J, Niemeyer C, Chasis JA, Fixler J, Mohandas N. Nucleolar localization of RPS19 protein in normal cells and mislocalization due to mutations in the nucleolar localization signals in 2 Diamond-Blackfan anemia patients: potential insights into pathophysiology. Blood. 2003 Jun 15;101(12):5039-45. Epub 2003 Feb 13. PMID:12586610 doi:10.1182/blood-2002-12-3878
  3. Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J, Matsson H, Tentler D, Mohandas N, Carlsson B, Dahl N. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet. 1999 Feb;21(2):169-75. PMID:9988267 doi:10.1038/5951
  4. Willig TN, Draptchinskaia N, Dianzani I, Ball S, Niemeyer C, Ramenghi U, Orfali K, Gustavsson P, Garelli E, Brusco A, Tiemann C, Perignon JL, Bouchier C, Cicchiello L, Dahl N, Mohandas N, Tchernia G. Mutations in ribosomal protein S19 gene and diamond blackfan anemia: wide variations in phenotypic expression. Blood. 1999 Dec 15;94(12):4294-306. PMID:10590074
  5. Ramenghi U, Campagnoli MF, Garelli E, Carando A, Brusco A, Bagnara GP, Strippoli P, Izzi GC, Brandalise S, Riccardi R, Dianzani I. Diamond-Blackfan anemia: report of seven further mutations in the RPS19 gene and evidence of mutation heterogeneity in the Italian population. Blood Cells Mol Dis. 2000 Oct;26(5):417-22. PMID:11112378 doi:10.1006/bcmd.2000.0324
  6. Proust A, Da Costa L, Rince P, Landois A, Tamary H, Zaizov R, Tchernia G, Delaunay J. Ten novel Diamond-Blackfan anemia mutations and three polymorphisms within the rps19 gene. Hematol J. 2003;4(2):132-6. PMID:12750732 doi:10.1038/sj.thj.6200230
  7. Gazda HT, Zhong R, Long L, Niewiadomska E, Lipton JM, Ploszynska A, Zaucha JM, Vlachos A, Atsidaftos E, Viskochil DH, Niemeyer CM, Meerpohl JJ, Rokicka-Milewska R, Pospisilova D, Wiktor-Jedrzejczak W, Nathan DG, Beggs AH, Sieff CA. RNA and protein evidence for haplo-insufficiency in Diamond-Blackfan anaemia patients with RPS19 mutations. Br J Haematol. 2004 Oct;127(1):105-13. PMID:15384984 doi:10.1111/j.1365-2141.2004.05152.x
  8. Gazda HT, Grabowska A, Merida-Long LB, Latawiec E, Schneider HE, Lipton JM, Vlachos A, Atsidaftos E, Ball SE, Orfali KA, Niewiadomska E, Da Costa L, Tchernia G, Niemeyer C, Meerpohl JJ, Stahl J, Schratt G, Glader B, Backer K, Wong C, Nathan DG, Beggs AH, Sieff CA. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet. 2006 Dec;79(6):1110-8. Epub 2006 Nov 2. PMID:17186470 doi:10.1086/510020
  9. Doherty L, Sheen MR, Vlachos A, Choesmel V, O'Donohue MF, Clinton C, Schneider HE, Sieff CA, Newburger PE, Ball SE, Niewiadomska E, Matysiak M, Glader B, Arceci RJ, Farrar JE, Atsidaftos E, Lipton JM, Gleizes PE, Gazda HT. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond-Blackfan anemia. Am J Hum Genet. 2010 Feb 12;86(2):222-8. doi: 10.1016/j.ajhg.2009.12.015. Epub, 2010 Jan 28. PMID:20116044 doi:10.1016/j.ajhg.2009.12.015
  10. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O'Donohue MF, Schneider H, Darras N, Hasman C, Sieff CA, Newburger PE, Ball SE, Niewiadomska E, Matysiak M, Zaucha JM, Glader B, Niemeyer C, Meerpohl JJ, Atsidaftos E, Lipton JM, Gleizes PE, Beggs AH. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet. 2008 Dec;83(6):769-80. PMID:19061985 doi:S0002-9297(08)00589-2
  11. Doherty L, Sheen MR, Vlachos A, Choesmel V, O'Donohue MF, Clinton C, Schneider HE, Sieff CA, Newburger PE, Ball SE, Niewiadomska E, Matysiak M, Glader B, Arceci RJ, Farrar JE, Atsidaftos E, Lipton JM, Gleizes PE, Gazda HT. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond-Blackfan anemia. Am J Hum Genet. 2010 Feb 12;86(2):222-8. doi: 10.1016/j.ajhg.2009.12.015. Epub, 2010 Jan 28. PMID:20116044 doi:10.1016/j.ajhg.2009.12.015
  12. Cmejla R, Cmejlova J, Handrkova H, Petrak J, Pospisilova D. Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat. 2007 Dec;28(12):1178-82. PMID:17647292 doi:10.1002/humu.20608
  13. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O'Donohue MF, Schneider H, Darras N, Hasman C, Sieff CA, Newburger PE, Ball SE, Niewiadomska E, Matysiak M, Zaucha JM, Glader B, Niemeyer C, Meerpohl JJ, Atsidaftos E, Lipton JM, Gleizes PE, Beggs AH. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet. 2008 Dec;83(6):769-80. PMID:19061985 doi:S0002-9297(08)00589-2
  14. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
  15. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
  16. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
  17. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
  18. Flygare J, Aspesi A, Bailey JC, Miyake K, Caffrey JM, Karlsson S, Ellis SR. Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood. 2007 Feb 1;109(3):980-6. Epub 2006 Sep 21. PMID:16990592 doi:blood-2006-07-038232
  19. Choesmel V, Fribourg S, Aguissa-Toure AH, Pinaud N, Legrand P, Gazda HT, Gleizes PE. Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder. Hum Mol Genet. 2008 May 1;17(9):1253-63. Epub 2008 Jan 29. PMID:18230666 doi:ddn015
  20. Terranova VP, Rao CN, Kalebic T, Margulies IM, Liotta LA. Laminin receptor on human breast carcinoma cells. Proc Natl Acad Sci U S A. 1983 Jan;80(2):444-8. PMID:6300843
  21. Kim K, Li L, Kozlowski K, Suh HS, Cao W, Ballermann BJ. The protein phosphatase-1 targeting subunit TIMAP regulates LAMR1 phosphorylation. Biochem Biophys Res Commun. 2005 Dec 23;338(3):1327-34. Epub 2005 Oct 25. PMID:16263087 doi:10.1016/j.bbrc.2005.10.089
  22. Kim KJ, Chung JW, Kim KS. 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J Biol Chem. 2005 Jan 14;280(2):1360-8. Epub 2004 Oct 29. PMID:15516338 doi:M410176200
  23. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O'Donohue MF, Schneider H, Darras N, Hasman C, Sieff CA, Newburger PE, Ball SE, Niewiadomska E, Matysiak M, Zaucha JM, Glader B, Niemeyer C, Meerpohl JJ, Atsidaftos E, Lipton JM, Gleizes PE, Beggs AH. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet. 2008 Dec;83(6):769-80. PMID:19061985 doi:S0002-9297(08)00589-2
  24. Chang BY, Conroy KB, Machleder EM, Cartwright CA. RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol. 1998 Jun;18(6):3245-56. PMID:9584165
  25. Gallina A, Rossi F, Milanesi G. Rack1 binds HIV-1 Nef and can act as a Nef-protein kinase C adaptor. Virology. 2001 Apr 25;283(1):7-18. PMID:11312657 doi:10.1006/viro.2001.0855
  26. Hermanto U, Zong CS, Li W, Wang LH. RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol. 2002 Apr;22(7):2345-65. PMID:11884618
  27. Rigas AC, Ozanne DM, Neal DE, Robson CN. The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway. J Biol Chem. 2003 Nov 14;278(46):46087-93. Epub 2003 Sep 4. PMID:12958311 doi:http://dx.doi.org/10.1074/jbc.M306219200
  28. Cox EA, Bennin D, Doan AT, O'Toole T, Huttenlocher A. RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site. Mol Biol Cell. 2003 Feb;14(2):658-69. PMID:12589061 doi:10.1091/mbc.E02-03-0142
  29. Kraus S, Gioeli D, Vomastek T, Gordon V, Weber MJ. Receptor for activated C kinase 1 (RACK1) and Src regulate the tyrosine phosphorylation and function of the androgen receptor. Cancer Res. 2006 Nov 15;66(22):11047-54. PMID:17108144 doi:10.1158/0008-5472.CAN-06-0596
  30. Chuang NN, Huang CC. Interaction of integrin beta1 with cytokeratin 1 in neuroblastoma NMB7 cells. Biochem Soc Trans. 2007 Nov;35(Pt 5):1292-4. PMID:17956333 doi:10.1042/BST0351292
  31. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell. 2007 Jan 26;25(2):207-17. PMID:17244529 doi:10.1016/j.molcel.2007.01.001
  32. Cao G, Thebault S, van der Wijst J, van der Kemp A, Lasonder E, Bindels RJ, Hoenderop JG. RACK1 inhibits TRPM6 activity via phosphorylation of the fused alpha-kinase domain. Curr Biol. 2008 Feb 12;18(3):168-76. doi: 10.1016/j.cub.2007.12.058. PMID:18258429 doi:10.1016/j.cub.2007.12.058
  33. Bourd-Boittin K, Le Pabic H, Bonnier D, L'Helgoualc'h A, Theret N. RACK1, a new ADAM12 interacting protein. Contribution to liver fibrogenesis. J Biol Chem. 2008 Sep 19;283(38):26000-9. doi: 10.1074/jbc.M709829200. Epub 2008 , Jul 11. PMID:18621736 doi:10.1074/jbc.M709829200
  34. Parent A, Laroche G, Hamelin E, Parent JL. RACK1 regulates the cell surface expression of the G protein-coupled receptor for thromboxane A(2). Traffic. 2008 Mar;9(3):394-407. Epub 2007 Dec 14. PMID:18088317 doi:10.1111/j.1600-0854.2007.00692.x
  35. Ruan Y, Guo L, Qiao Y, Hong Y, Zhou L, Sun L, Wang L, Zhu H, Wang L, Yun X, Xie J, Gu J. RACK1 associates with CLEC-2 and promotes its ubiquitin-proteasome degradation. Biochem Biophys Res Commun. 2009 Dec 11;390(2):217-22. doi:, 10.1016/j.bbrc.2009.09.087. Epub 2009 Sep 26. PMID:19785988 doi:10.1016/j.bbrc.2009.09.087
  36. Kiely PA, Baillie GS, Barrett R, Buckley DA, Adams DR, Houslay MD, O'Connor R. Phosphorylation of RACK1 on tyrosine 52 by c-Abl is required for insulin-like growth factor I-mediated regulation of focal adhesion kinase. J Biol Chem. 2009 Jul 24;284(30):20263-74. doi: 10.1074/jbc.M109.017640. Epub, 2009 May 7. PMID:19423701 doi:10.1074/jbc.M109.017640
  37. Wu Y, Wang Y, Sun Y, Zhang L, Wang D, Ren F, Chang D, Chang Z, Jia B. RACK1 promotes Bax oligomerization and dissociates the interaction of Bax and Bcl-XL. Cell Signal. 2010 Oct;22(10):1495-501. doi: 10.1016/j.cellsig.2010.05.018. Epub, 2010 Jun 10. PMID:20541605 doi:10.1016/j.cellsig.2010.05.018
  38. Reiner CL, McCullar JS, Kow RL, Le JH, Goodlett DR, Nathanson NM. RACK1 associates with muscarinic receptors and regulates M(2) receptor trafficking. PLoS One. 2010 Oct 20;5(10):e13517. doi: 10.1371/journal.pone.0013517. PMID:20976005 doi:10.1371/journal.pone.0013517
  39. Schaffler K, Schulz K, Hirmer A, Wiesner J, Grimm M, Sickmann A, Fischer U. A stimulatory role for the La-related protein 4B in translation. RNA. 2010 Aug;16(8):1488-99. doi: 10.1261/rna.2146910. Epub 2010 Jun 23. PMID:20573744 doi:10.1261/rna.2146910
  40. Cao XX, Xu JD, Xu JW, Liu XL, Cheng YY, Li QQ, Xu ZD, Liu XP. RACK1 promotes breast carcinoma migration/metastasis via activation of the RhoA/Rho kinase pathway. Breast Cancer Res Treat. 2011 Apr;126(3):555-63. doi: 10.1007/s10549-010-0955-3. , Epub 2010 May 25. PMID:20499158 doi:10.1007/s10549-010-0955-3
  41. Wang F, Yamauchi M, Muramatsu M, Osawa T, Tsuchida R, Shibuya M. RACK1 regulates VEGF/Flt1-mediated cell migration via activation of a PI3K/Akt pathway. J Biol Chem. 2011 Mar 18;286(11):9097-106. doi: 10.1074/jbc.M110.165605. Epub, 2011 Jan 6. PMID:21212275 doi:10.1074/jbc.M110.165605
  42. Thorslund SE, Edgren T, Pettersson J, Nordfelth R, Sellin ME, Ivanova E, Francis MS, Isaksson EL, Wolf-Watz H, Fallman M. The RACK1 signaling scaffold protein selectively interacts with Yersinia pseudotuberculosis virulence function. PLoS One. 2011 Feb 10;6(2):e16784. doi: 10.1371/journal.pone.0016784. PMID:21347310 doi:10.1371/journal.pone.0016784
  43. Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A, Hilal T, Sprink T, Yamamoto K, Mielke T, Burger J, Shaikh TR, Dabrowski M, Hildebrand PW, Scheerer P, Spahn CM. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. EMBO J. 2015 Dec 14;34(24):3042-58. doi: 10.15252/embj.201592469. Epub 2015 Nov, 24. PMID:26604301 doi:http://dx.doi.org/10.15252/embj.201592469

5flx, resolution 3.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA