1ydv

From Proteopedia
Revision as of 10:01, 25 April 2018 by OCA (talk | contribs)
Jump to navigation Jump to search

TRIOSEPHOSPHATE ISOMERASE (TIM)TRIOSEPHOSPHATE ISOMERASE (TIM)

Structural highlights

1ydv is a 2 chain structure with sequence from Plafa. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Activity:Triose-phosphate isomerase, with EC number 5.3.1.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Malaria caused by the parasite Plasmodium falciparum is a major public health concern. The parasite lacks a functional tricarboxylic acid cycle, making glycolysis its sole energy source. Although parasite enzymes have been considered as potential antimalarial drug targets, little is known about their structural biology. Here we report the crystal structure of triosephosphate isomerase (TIM) from P. falciparum at 2.2 A resolution. RESULTS: The crystal structure of P. falciparum TIM (PfTIM), expressed in Escherichia coli, was determined by the molecular replacement method using the structure of trypanosomal TIM as the starting model. Comparison of the PfTIM structure with other TIM structures, particularly human TIM, revealed several differences. In most TIMs the residue at position 183 is a glutamate but in PfTIM it is a leucine. This leucine residue is completely exposed and together with the surrounding positively charged patch, may be responsible for binding TIM to the erythrocyte membrane. Another interesting feature is the occurrence of a cysteine residue at the dimer interface of PfTIM (Cys13), in contrast to human TIM where this residue is a methionine. Finally, residue 96 of human TIM (Ser96), which occurs near the active site, has been replaced by phenylalanine in PfTIM. CONCLUSIONS: Although the human and Plasmodium enzymes share 42% amino acid sequence identity, several key differences suggest that PfTIM may turn out to be a potential drug target. We have identified a region which may be responsible for binding PfTIM to cytoskeletal elements or the band 3 protein of erythrocytes; attachment to the erythrocyte membrane may subsequently lead to the extracellular exposure of parts of the protein. This feature may be important in view of a recent report that patients suffering from P. falciparum malaria mount an antibody response to TIM leading to prolonged hemolysis. A second approach to drug design may be provided by the mutation of the largely conserved residue (Ser96) to phenylalanine in PfTIM. This difference may be of importance in designing specific active-site inhibitors against the enzyme. Finally, specific inhibition of PfTIM subunit assembly might be possible by targeting Cys13 at the dimer interface. The crystal structure of PfTIM provides a framework for new therapeutic leads.

Triosephosphate isomerase from Plasmodium falciparum: the crystal structure provides insights into antimalarial drug design.,Velanker SS, Ray SS, Gokhale RS, Suma S, Balaram H, Balaram P, Murthy MR Structure. 1997 Jun 15;5(6):751-61. PMID:9261072[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Velanker SS, Ray SS, Gokhale RS, Suma S, Balaram H, Balaram P, Murthy MR. Triosephosphate isomerase from Plasmodium falciparum: the crystal structure provides insights into antimalarial drug design. Structure. 1997 Jun 15;5(6):751-61. PMID:9261072

1ydv, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA