1cnp
THE STRUCTURE OF CALCYCLIN REVEALS A NOVEL HOMODIMERIC FOLD FOR S100 CA2+-BINDING PROTEINS, NMR, 22 STRUCTURESTHE STRUCTURE OF CALCYCLIN REVEALS A NOVEL HOMODIMERIC FOLD FOR S100 CA2+-BINDING PROTEINS, NMR, 22 STRUCTURES
Structural highlights
Function[S10A6_RABIT] May function as calcium sensor and contribute to cellular calcium signaling (Potential). May function by interacting with other proteins and indirectly play a role in the reorganization of the actin cytoskeleton and in cell motility. Binds 2 calcium ions. Calcium binding is cooperative (By similarity). Interacts with FKBP4 (By similarity). Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe S100 calcium-binding proteins are implicated as effectors in calcium-mediated signal transduction pathways. The three-dimensional structure of the S100 protein calcyclin has been determined in solution in the apo state by NMR spectroscopy and a computational strategy that incorporates a systematic docking protocol. This structure reveals a symmetric homodimeric fold that is unique among calcium-binding proteins. Dimerization is mediated by hydrophobic contacts from several highly conserved residues, which suggests that the dimer fold identified for calcyclin will serve as a structural paradigm for the S100 subfamily of calcium-binding proteins. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca(2+)-binding proteins.,Potts BC, Smith J, Akke M, Macke TJ, Okazaki K, Hidaka H, Case DA, Chazin WJ Nat Struct Biol. 1995 Sep;2(9):790-6. PMID:7552751[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|