2aj1
Solution structure of apoCadASolution structure of apoCadA
Structural highlights
Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIn bacteria, P1-type ATPases are responsible for resistance to di- and monovalent toxic heavy metals by taking them out of the cell. These ATPases have a cytoplasmic N terminus comprising metal binding domains defined by a betaalphabetabetaalphabeta fold and a CXXC metal binding motif. To check how the structural properties of the metal binding site in the N terminus can influence the metal specificity of the ATPase, the first structure of a Cd(II)-ATPase N terminus was determined by NMR and its coordination sphere was investigated by X-ray absorption spectroscopy. A novel metal binding environment was found, comprising the two conserved Cys residues of the metal binding motif and a Glu in loop 5. A bioinformatic search identifies an ensemble of highly homologous sequences presumably with the same function. Another group of highly homologous sequences is found which can be referred to as zinc-detoxifying P1-type ATPases with the metal binding pattern DCXXC in the N terminus. Because no carboxylate groups participate in Cu(I) or Ag(I) binding sites, we suggest that the acidic residue plays a key role in the coordination properties of divalent cations, hence conferring a function to the N terminus in the metal specificity of the ATPase. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA.,Banci L, Bertini I, Ciofi-Baffoni S, Su XC, Miras R, Bal N, Mintz E, Catty P, Shokes JE, Scott RA J Mol Biol. 2006 Feb 24;356(3):638-50. Epub 2005 Dec 5. PMID:16388822[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|