3unb

From Proteopedia
Revision as of 09:15, 13 November 2013 by OCA (talk | contribs)
Jump to navigation Jump to search
Warning: this is a large structure, and loading might take a long time or not happen at all.

Template:STRUCTURE 3unb

Mouse constitutive 20S proteasome in complex with PR-957Mouse constitutive 20S proteasome in complex with PR-957

Template:ABSTRACT PUBMED 22341445

FunctionFunction

[PSA3_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. [PSB5_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This unit is responsible of the chymotrypsin-like activity of the proteasome and is one of the principal target of the proteasome inhibitor bortezomib (By similarity). Plays a role in the protection against oxidative damage through the Nrf2-ARE pathway.[1] [PSA7_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. Inhibits the transactivation function of HIF-1A under both normoxic and hypoxia-mimicking conditions (By similarity). The interaction with EMAP2 increases the proteasome-mediated HIF-1A degradation under the hypoxic conditions (By similarity). Promotes MAVS degradation and thereby negatively regulates MAVS-mediated innate immune response (By similarity). [PSA6_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. [PSB3_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. [PSA4_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. [PSB1_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. [PSB6_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. May catalyze basal processing of intracellular antigens. [PSB7_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This unit is responsible of the trypsin-like activity of the proteasome (By similarity). [PSA2_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. PSMA2 may have a potential regulatory effect on another component(s) of the proteasome complex through tyrosine phosphorylation. [PSA5_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. [PSB2_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This subunit has a chymotrypsin-like activity. [PSB4_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. Mediates the lipopolysaccharide-induced signal macrophage proteasome. SMAD1/OAZ1/PSMB4 complex mediates the degradation of the CREBBP/EP300 repressor SNIP1 (By similarity).[2] [PSA1_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. Mediates the lipopolysaccharide-induced signal macrophage proteasome. Might be involved in the anti-inflammatory response of macrophages during the interaction with C.albicans heat-inactivated cells.[3] [4]

About this StructureAbout this Structure

3unb is a 56 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA.

See AlsoSee Also

ReferenceReference

[xtra 1]

  1. Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, Groettrup M, Groll M. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell. 2012 Feb 17;148(4):727-38. PMID:22341445 doi:10.1016/j.cell.2011.12.030
  1. Park HM, Kim JA, Kwak MK. Protection against amyloid beta cytotoxicity by sulforaphane: role of the proteasome. Arch Pharm Res. 2009 Jan;32(1):109-15. doi: 10.1007/s12272-009-1124-2. Epub 2009 , Jan 29. PMID:19183883 doi:http://dx.doi.org/10.1007/s12272-009-1124-2
  2. Qureshi N, Perera PY, Shen J, Zhang G, Lenschat A, Splitter G, Morrison DC, Vogel SN. The proteasome as a lipopolysaccharide-binding protein in macrophages: differential effects of proteasome inhibition on lipopolysaccharide-induced signaling events. J Immunol. 2003 Aug 1;171(3):1515-25. PMID:12874245
  3. Qureshi N, Perera PY, Shen J, Zhang G, Lenschat A, Splitter G, Morrison DC, Vogel SN. The proteasome as a lipopolysaccharide-binding protein in macrophages: differential effects of proteasome inhibition on lipopolysaccharide-induced signaling events. J Immunol. 2003 Aug 1;171(3):1515-25. PMID:12874245
  4. Martinez-Solano L, Reales-Calderon JA, Nombela C, Molero G, Gil C. Proteomics of RAW 264.7 macrophages upon interaction with heat-inactivated Candida albicans cells unravel an anti-inflammatory response. Proteomics. 2009 Jun;9(11):2995-3010. doi: 10.1002/pmic.200800016. PMID:19526544 doi:http://dx.doi.org/10.1002/pmic.200800016

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA