3kvf

From Proteopedia
Revision as of 22:35, 24 March 2013 by OCA (talk | contribs)
Jump to navigation Jump to search

Template:STRUCTURE 3kvf

Crystal structure of the I93M mutant of ubiquitin carboxy terminal hydrolase L1 bound to ubiquitin vinylmethylesterCrystal structure of the I93M mutant of ubiquitin carboxy terminal hydrolase L1 bound to ubiquitin vinylmethylester

Template:ABSTRACT PUBMED 20439756

DiseaseDisease

[UCHL1_HUMAN] Defects in UCHL1 are the cause of Parkinson disease type 5 (PARK5) [MIM:613643]; also known as Parkinson disease autosomal dominant 5. PARK5 is a complex neurodegenerative disorder with manifestations ranging from typical Parkinson disease to dementia with Lewy bodies. Clinical features include parkinsonian symptoms (resting tremor, rigidity, postural instability and bradykinesia), dementia, diffuse Lewy body pathology, autonomic dysfunction, hallucinations and paranoia.[1][2][3][4]

FunctionFunction

[UCHL1_HUMAN] Ubiquitin-protein hydrolase involved both in the processing of ubiquitin precursors and of ubiquitinated proteins. This enzyme is a thiol protease that recognizes and hydrolyzes a peptide bond at the C-terminal glycine of ubiquitin. Also binds to free monoubiquitin and may prevent its degradation in lysosomes. The homodimer may have ATP-independent ubiquitin ligase activity.[5][6][7]

About this StructureAbout this Structure

3kvf is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See AlsoSee Also

ReferenceReference

[xtra 1]

  1. Boudreaux DA, Maiti TK, Davies CW, Das C. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation. Proc Natl Acad Sci U S A. 2010 May 18;107(20):9117-22. Epub 2010 May 3. PMID:20439756
  1. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell. 2002 Oct 18;111(2):209-18. PMID:12408865
  2. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH. The ubiquitin pathway in Parkinson's disease. Nature. 1998 Oct 1;395(6701):451-2. PMID:9774100 doi:10.1038/26652
  3. Nishikawa K, Li H, Kawamura R, Osaka H, Wang YL, Hara Y, Hirokawa T, Manago Y, Amano T, Noda M, Aoki S, Wada K. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun. 2003 Apr 25;304(1):176-83. PMID:12705903
  4. Healy DG, Abou-Sleiman PM, Casas JP, Ahmadi KR, Lynch T, Gandhi S, Muqit MM, Foltynie T, Barker R, Bhatia KP, Quinn NP, Lees AJ, Gibson JM, Holton JL, Revesz T, Goldstein DB, Wood NW. UCHL-1 is not a Parkinson's disease susceptibility gene. Ann Neurol. 2006 Apr;59(4):627-33. PMID:16450370 doi:10.1002/ana.20757
  5. Wada H, Kito K, Caskey LS, Yeh ET, Kamitani T. Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem Biophys Res Commun. 1998 Oct 29;251(3):688-92. PMID:9790970 doi:S0006-291X(98)99532-8
  6. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell. 2002 Oct 18;111(2):209-18. PMID:12408865
  7. Kyratzi E, Pavlaki M, Stefanis L. The S18Y polymorphic variant of UCH-L1 confers an antioxidant function to neuronal cells. Hum Mol Genet. 2008 Jul 15;17(14):2160-71. doi: 10.1093/hmg/ddn115. Epub 2008 Apr, 14. PMID:18411255 doi:10.1093/hmg/ddn115

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA