Enalapril

From Proteopedia
Revision as of 14:23, 9 December 2010 by David Canner (talk | contribs)
Jump to navigation Jump to search

Enalaprilat, the metabolite of Enalapril, also known as Vasotec

Drag the structure with the mouse to rotate

Better Known as: Vasotec

Mechanism of Action

Angiotensin II has been implicated in cardiac, renal and vascular diseases. [1] Bradykinin, a small peptide that counterbalance the effects of Angiotensin II by acting as a strong vasodilator upon binding AT2, is degraded by the same ACE-1 enzyme. Since ACE-1 is the primary producer of Angiotensin II and degrader of Bradykinins, inhibition of ACE-1 has proven an effective treatment for Hypertension and Congestive Heart Failure. Enalapril is quickly metabolized into Enalaprilat, the more active metabolite of Enalapril predominantly by the Hepatic enzyme CYP3A4. Enalaprilat binds to the active site of , preventing ACE-1 from binding and converting Angiotensin I into Angiotensin II. to ACE-1 via electrostatic interactions with His 353, Ala 354 (Backbone oxygen), Glue 384, Lys 511, His 513, Tyr 520 and Tyr 523 along with the zinc cation. [2]

Pharmacokinetics

ACE-Inhibitor Pharmacokinetics Comparison at Equivalent Dosages [3][4][5][6]
Parameter Captopril Lisinopril Ramipril Enalapril Benazepril Perindopril Trandolapril
Tmax (hr) .98 6.5 .67 1.06 .5 .75 .72
Cmax (ng/ml) 1210 79 16.4 314 149 105 1.68
Bioavailability (%) 72 25 28 60 97 24 10
Protein Binding (%) 97 0 73 20 97 20 80
T1/2 (hr) .56 10.1 1.93 1.6 10 .9 .68
AUC (ng/ml/hr) 1673 1016 21.9 450 140 182 1.86
IC50 (nM) 1.1 5.5 5.0 5.4 1.7 2.4 2.5
Dosage (mg) 10 20 5 20 10 4 2
Metabolism Hepatic (CYP2D6) None Hepatic Hepatic (CYP3A4) Hepatic Hepatic Hepatic (CYP2D6 & CYP2C9)

References

  1. Ferrario CM. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst. 2006 Mar;7(1):3-14. PMID:17083068
  2. Natesh R, Schwager SL, Evans HR, Sturrock ED, Acharya KR. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry. 2004 Jul 13;43(27):8718-24. PMID:15236580 doi:10.1021/bi049480n
  3. Sun JX, Cipriano A, Chan K, John VA. Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects. Eur J Clin Pharmacol. 1994;47(3):285-9. PMID:7867683
  4. Arafat T, Awad R, Hamad M, Azzam R, Al-Nasan A, Jehanli A, Matalka K. Pharmacokinetics and pharmacodynamics profiles of enalapril maleate in healthy volunteers following determination of enalapril and enalaprilat by two specific enzyme immunoassays. J Clin Pharm Ther. 2005 Aug;30(4):319-28. PMID:15985045 doi:10.1111/j.1365-2710.2005.00646.x
  5. Tamimi JJ, Salem II, Alam SM, Zaman Q, Dham R. Bioequivalence evaluation of two brands of lisinopril tablets (Lisotec and Zestril) in healthy human volunteers. Biopharm Drug Dispos. 2005 Nov;26(8):335-9. PMID:16075412 doi:10.1002/bdd.465
  6. Arner P, Wade A, Engfeldt P, Mouren M, Stepniewski JP, Sultan E, Bryce T, Lenfant B. Pharmacokinetics and pharmacodynamics of trandolapril after repeated administration of 2 mg to young and elderly patients with mild-to-moderate hypertension. J Cardiovasc Pharmacol. 1994;23 Suppl 4:S44-9. PMID:7527101


Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

David Canner, Alexander Berchansky