6s1c

From Proteopedia
Revision as of 11:20, 20 January 2021 by OCA (talk | contribs)
Jump to navigation Jump to search

P3221 crystal form of the Ctf18-1-8/Pol2(1-528) complexP3221 crystal form of the Ctf18-1-8/Pol2(1-528) complex

Structural highlights

6s1c is a 8 chain structure with sequence from Baker's yeast. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:POL2, DUN2, YNL262W, N0825 (Baker's yeast), DCC1, YCL016C, YCL16C (Baker's yeast), CTF8, YHR191C (Baker's yeast), CTF18, CHL12, YMR078C, YM9582.03C (Baker's yeast)
Activity:DNA-directed DNA polymerase, with EC number 2.7.7.7
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[CTF18_YEAST] Essential for the fidelity of chromosome transmission. Required for the DNA replication block checkpoint. Component of the RFC-like complex CTF18-RFC which is required for efficient establishment of chromosome cohesion during S-phase and may load or unload POL30/PCNA. During a clamp loading circle, the RFC:clamp complex binds to DNA and the recognition of the double-stranded/single-stranded junction stimulates ATP hydrolysis by RFC. The complex presumably provides bipartite ATP sites in which one subunit supplies a catalytic site for hydrolysis of ATP bound to the neighboring subunit. Dissociation of RFC from the clamp leaves the clamp encircling DNA.[1] [2] [3] [4] [DPOE_YEAST] DNA polymerase epsilon (DNA polymerase II) participates in chromosomal DNA replication. It is required during synthesis of the leading and lagging DNA strands at the replication fork and binds at/or near replication origins and moves along DNA with the replication fork. It has 3'-5' proofreading exonuclease activity that correct errors arising during DNA replication. It is also involved in DNA synthesis during DNA repair.[5] [CTF8_YEAST] Essential for the fidelity of chromosome transmission. Required for the DNA replication block checkpoint. Component of the RFC-like complex CTF18-RFC which is required for efficient establishment of chromosome cohesion during S-phase and may load or unload POL30/PCNA. During a clamp loading circle, the RFC:clamp complex binds to DNA and the recognition of the double-stranded/single-stranded junction stimulates ATP hydrolysis by RFC. The complex presumably provides bipartite ATP sites in which one subunit supplies a catalytic site for hydrolysis of ATP bound to the neighboring subunit. Dissociation of RFC from the clamp leaves the clamp encircling DNA.[6] [7] [DCC1_YEAST] Component of the RFC-like complex CTF18-RFC which is required for efficient establishment of chromosome cohesion during S-phase and may load or unload POL30/PCNA. During a clamp loading circle, the RFC:clamp complex binds to DNA and the recognition of the double-stranded/single-stranded junction stimulates ATP hydrolysis by RFC. The complex presumably provides bipartite ATP sites in which one subunit supplies a catalytic site for hydrolysis of ATP bound to the neighboring subunit. Dissociation of RFC from the clamp leaves the clamp encircling DNA.[8] [9]

Publication Abstract from PubMed

The eukaryotic replisome must faithfully replicate DNA and cope with replication fork blocks and stalling, while simultaneously promoting sister chromatid cohesion. Ctf18-RFC is an alternative PCNA loader that links all these processes together by an unknown mechanism. Here, we use integrative structural biology combined with yeast genetics and biochemistry to highlight the specific functions that Ctf18-RFC plays within the leading strand machinery via an interaction with the catalytic domain of DNA Pol . We show that a large and unusually flexible interface enables this interaction to occur constitutively throughout the cell cycle and regardless of whether forks are replicating or stalled. We reveal that, by being anchored to the leading strand polymerase, Ctf18-RFC can rapidly signal fork stalling to activate the S phase checkpoint. Moreover, we demonstrate that, independently of checkpoint signaling or chromosome cohesion, Ctf18-RFC functions in parallel to Chl1 and Mrc1 to protect replication forks and cell viability.

Ctf18-RFC and DNA Pol form a stable leading strand polymerase/clamp loader complex required for normal and perturbed DNA replication.,Stokes K, Winczura A, Song B, Piccoli G, Grabarczyk DB Nucleic Acids Res. 2020 Aug 20;48(14):8128-8145. doi: 10.1093/nar/gkaa541. PMID:32585006[10]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hanna JS, Kroll ES, Lundblad V, Spencer FA. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol. 2001 May;21(9):3144-58. PMID:11287619 doi:http://dx.doi.org/10.1128/MCB.21.9.3144-3158.2001
  2. Mayer ML, Gygi SP, Aebersold R, Hieter P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol Cell. 2001 May;7(5):959-70. PMID:11389843
  3. Naiki T, Kondo T, Nakada D, Matsumoto K, Sugimoto K. Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol Cell Biol. 2001 Sep;21(17):5838-45. PMID:11486023
  4. Bylund GO, Burgers PM. Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol. 2005 Jul;25(13):5445-55. PMID:15964801 doi:http://dx.doi.org/25/13/5445
  5. Shimizu K, Hashimoto K, Kirchner JM, Nakai W, Nishikawa H, Resnick MA, Sugino A. Fidelity of DNA polymerase epsilon holoenzyme from budding yeast Saccharomyces cerevisiae. J Biol Chem. 2002 Oct 4;277(40):37422-9. Epub 2002 Jul 17. PMID:12124389 doi:http://dx.doi.org/10.1074/jbc.M204476200
  6. Mayer ML, Gygi SP, Aebersold R, Hieter P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol Cell. 2001 May;7(5):959-70. PMID:11389843
  7. Bylund GO, Burgers PM. Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol. 2005 Jul;25(13):5445-55. PMID:15964801 doi:http://dx.doi.org/25/13/5445
  8. Mayer ML, Gygi SP, Aebersold R, Hieter P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol Cell. 2001 May;7(5):959-70. PMID:11389843
  9. Bylund GO, Burgers PM. Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol. 2005 Jul;25(13):5445-55. PMID:15964801 doi:http://dx.doi.org/25/13/5445
  10. Stokes K, Winczura A, Song B, Piccoli G, Grabarczyk DB. Ctf18-RFC and DNA Pol form a stable leading strand polymerase/clamp loader complex required for normal and perturbed DNA replication. Nucleic Acids Res. 2020 Aug 20;48(14):8128-8145. doi: 10.1093/nar/gkaa541. PMID:32585006 doi:http://dx.doi.org/10.1093/nar/gkaa541

6s1c, resolution 6.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA