Structural highlightsDisease[KC1D_HUMAN] Familial advanced sleep-phase syndrome. The disease is caused by mutations affecting the gene represented in this entry. [P63_HUMAN] Defects in TP63 are the cause of acro-dermato-ungual-lacrimal-tooth syndrome (ADULT syndrome) [MIM:103285]; a form of ectodermal dysplasia. Ectodermal dysplasias (EDs) constitute a heterogeneous group of developmental disorders affecting tissues of ectodermal origin. EDs are characterized by abnormal development of two or more ectodermal structures such as hair, teeth, nails and sweat glands, with or without any additional clinical sign. Each combination of clinical features represents a different type of ectodermal dysplasia. ADULT syndrome involves ectrodactyly, syndactyly, finger- and toenail dysplasia, hypoplastic breasts and nipples, intensive freckling, lacrimal duct atresia, frontal alopecia, primary hypodontia, and loss of permanent teeth. ADULT differs significantly from EEC3 syndrome by the absence of facial clefting. Defects in TP63 are the cause of ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) [MIM:106260]. AEC is an autosomal dominant condition characterized by congenital ectodermal dysplasia with coarse, wiry, sparse hair, dystrophic nails, slight hypohidrosis, scalp infections, ankyloblepharon filiform adnatum, maxillary hypoplasia, hypodontia and cleft lip/palate.[1] Defects in TP63 are the cause of ectrodactyly-ectodermal dysplasia-cleft lip/palate syndrome type 3 (EEC3) [MIM:604292]. EEC3 is an autosomal dominant syndrome characterized by ectrodactyly of hands and feet, ectodermal dysplasia and facial clefting.[2] [3] [4] [5] Defects in TP63 are the cause of split-hand/foot malformation type 4 (SHFM4) [MIM:605289]. Split-hand/split-foot malformation is a limb malformation involving the central rays of the autopod and presenting with syndactyly, median clefts of the hands and feet, and aplasia and/or hypoplasia of the phalanges, metacarpals, and metatarsals. There is restricted overlap between the mutational spectra of EEC3 and SHFM4.[6] [7] Defects in TP63 are the cause of limb-mammary syndrome (LMS) [MIM:603543]. LMS is characterized by ectrodactyly, cleft palate and mammary-gland abnormalities.[8] Note=Defects in TP63 are a cause of cervical, colon, head and neck, lung and ovarian cancers. Defects in TP63 are a cause of ectodermal dysplasia Rapp-Hodgkin type (EDRH) [MIM:129400]; also called Rapp-Hodgkin syndrome or anhidrotic ectodermal dysplasia with cleft lip/palate. Ectodermal dysplasia defines a heterogeneous group of disorders due to abnormal development of two or more ectodermal structures. EDRH is characterized by the combination of anhidrotic ectodermal dysplasia, cleft lip, and cleft palate. The clinical syndrome is comprised of a characteristic facies (narrow nose and small mouth), wiry, slow-growing, and uncombable hair, sparse eyelashes and eyebrows, obstructed lacrimal puncta/epiphora, bilateral stenosis of external auditory canals, microsomia, hypodontia, cone-shaped incisors, enamel hypoplasia, dystrophic nails, and cleft lip/cleft palate.[9] [10] [11] [12] Defects in TP63 are the cause of non-syndromic orofacial cleft type 8 (OFC8) [MIM:129400]. Non-syndromic orofacial cleft is a common birth defect consisting of cleft lips with or without cleft palate. Cleft lips are associated with cleft palate in two-third of cases. A cleft lip can occur on one or both sides and range in severity from a simple notch in the upper lip to a complete opening in the lip extending into the floor of the nostril and involving the upper gum.
Function[KC1D_HUMAN] Essential serine/threonine-protein kinase that regulates diverse cellular growth and survival processes including Wnt signaling, DNA repair and circadian rhythms. It can phosphorylate a large number of proteins. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. Phosphorylates connexin-43/GJA1, MAP1A, SNAPIN, MAPT/TAU, TOP2A, DCK, HIF1A, EIF6, p53/TP53, DVL2, DVL3, ESR1, AIB1/NCOA3, DNMT1, PKD2, YAP1, PER1 and PER2. Central component of the circadian clock. May act as a negative regulator of circadian rhythmicity by phosphorylating PER1 and PER2, leading to retain PER1 in the cytoplasm. YAP1 phosphorylation promotes its SCF(beta-TRCP) E3 ubiquitin ligase-mediated ubiquitination and subsequent degradation. DNMT1 phosphorylation reduces its DNA-binding activity. Phosphorylation of ESR1 and AIB1/NCOA3 stimulates their activity and coactivation. Phosphorylation of DVL2 and DVL3 regulates WNT3A signaling pathway that controls neurite outgrowth. EIF6 phosphorylation promotes its nuclear export. Triggers down-regulation of dopamine receptors in the forebrain. Activates DCK in vitro by phosphorylation. TOP2A phosphorylation favors DNA cleavable complex formation. May regulate the formation of the mitotic spindle apparatus in extravillous trophoblast. Modulates connexin-43/GJA1 gap junction assembly by phosphorylation. Probably involved in lymphocyte physiology. Regulates fast synaptic transmission mediated by glutamate.[13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [P63_HUMAN] Acts as a sequence specific DNA binding transcriptional activator or repressor. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. Isoform 2 activates RIPK4 transcription. May be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. Involved in Notch signaling by probably inducing JAG1 and JAG2. Plays a role in the regulation of epithelial morphogenesis. The ratio of DeltaN-type and TA*-type isoforms may govern the maintenance of epithelial stem cell compartments and regulate the initiation of epithelial stratification from the undifferentiated embryonal ectoderm. Required for limb formation from the apical ectodermal ridge. Activates transcription of the p21 promoter.[29] [30] [31] [32] [33] [34] [35]
Publication Abstract from PubMed
The p53 homolog TAp63alpha is the transcriptional key regulator of genome integrity in oocytes. After DNA damage, TAp63alpha is activated by multistep phosphorylation involving multiple phosphorylation events by the kinase CK1, which triggers the transition from a dimeric and inactive conformation to an open and active tetramer that initiates apoptosis. By measuring activation kinetics in ovaries and single-site phosphorylation kinetics in vitro with peptides and full-length protein, we show that TAp63alpha phosphorylation follows a biphasic behavior. Although the first two CK1 phosphorylation events are fast, the third one, which constitutes the decisive step to form the active conformation, is slow. Structure determination of CK1 in complex with differently phosphorylated peptides reveals the structural mechanism for the difference in the kinetic behavior based on an unusual CK1/TAp63alpha substrate interaction in which the product of one phosphorylation step acts as an inhibitor for the following one.
p63 uses a switch-like mechanism to set the threshold for induction of apoptosis.,Gebel J, Tuppi M, Chaikuad A, Hotte K, Schroder M, Schulz L, Lohr F, Gutfreund N, Finke F, Henrich E, Mezhyrova J, Lehnert R, Pampaloni F, Hummer G, Stelzer EHK, Knapp S, Dotsch V Nat Chem Biol. 2020 Jul 27. pii: 10.1038/s41589-020-0600-3. doi:, 10.1038/s41589-020-0600-3. PMID:32719556[36]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See AlsoReferences
- ↑ McGrath JA, Duijf PH, Doetsch V, Irvine AD, de Waal R, Vanmolkot KR, Wessagowit V, Kelly A, Atherton DJ, Griffiths WA, Orlow SJ, van Haeringen A, Ausems MG, Yang A, McKeon F, Bamshad MA, Brunner HG, Hamel BC, van Bokhoven H. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum Mol Genet. 2001 Feb 1;10(3):221-9. PMID:11159940
- ↑ Celli J, Duijf P, Hamel BC, Bamshad M, Kramer B, Smits AP, Newbury-Ecob R, Hennekam RC, Van Buggenhout G, van Haeringen A, Woods CG, van Essen AJ, de Waal R, Vriend G, Haber DA, Yang A, McKeon F, Brunner HG, van Bokhoven H. Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell. 1999 Oct 15;99(2):143-53. PMID:10535733
- ↑ Ianakiev P, Kilpatrick MW, Toudjarska I, Basel D, Beighton P, Tsipouras P. Split-hand/split-foot malformation is caused by mutations in the p63 gene on 3q27. Am J Hum Genet. 2000 Jul;67(1):59-66. Epub 2000 Jun 5. PMID:10839977 doi:S0002-9297(07)62432-X
- ↑ van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH, Vanmolkot KR, van Beusekom E, van Beersum SE, Celli J, Merkx GF, Tenconi R, Fryns JP, Verloes A, Newbury-Ecob RA, Raas-Rotschild A, Majewski F, Beemer FA, Janecke A, Chitayat D, Crisponi G, Kayserili H, Yates JR, Neri G, Brunner HG. p63 Gene mutations in eec syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet. 2001 Sep;69(3):481-92. Epub 2001 Jul 17. PMID:11462173 doi:S0002-9297(07)61160-4
- ↑ Akahoshi K, Sakazume S, Kosaki K, Ohashi H, Fukushima Y. EEC syndrome type 3 with a heterozygous germline mutation in the P63 gene and B cell lymphoma. Am J Med Genet A. 2003 Jul 30;120A(3):370-3. PMID:12838557 doi:10.1002/ajmg.a.20064
- ↑ Ianakiev P, Kilpatrick MW, Toudjarska I, Basel D, Beighton P, Tsipouras P. Split-hand/split-foot malformation is caused by mutations in the p63 gene on 3q27. Am J Hum Genet. 2000 Jul;67(1):59-66. Epub 2000 Jun 5. PMID:10839977 doi:S0002-9297(07)62432-X
- ↑ van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH, Vanmolkot KR, van Beusekom E, van Beersum SE, Celli J, Merkx GF, Tenconi R, Fryns JP, Verloes A, Newbury-Ecob RA, Raas-Rotschild A, Majewski F, Beemer FA, Janecke A, Chitayat D, Crisponi G, Kayserili H, Yates JR, Neri G, Brunner HG. p63 Gene mutations in eec syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet. 2001 Sep;69(3):481-92. Epub 2001 Jul 17. PMID:11462173 doi:S0002-9297(07)61160-4
- ↑ van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH, Vanmolkot KR, van Beusekom E, van Beersum SE, Celli J, Merkx GF, Tenconi R, Fryns JP, Verloes A, Newbury-Ecob RA, Raas-Rotschild A, Majewski F, Beemer FA, Janecke A, Chitayat D, Crisponi G, Kayserili H, Yates JR, Neri G, Brunner HG. p63 Gene mutations in eec syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet. 2001 Sep;69(3):481-92. Epub 2001 Jul 17. PMID:11462173 doi:S0002-9297(07)61160-4
- ↑ Bougeard G, Hadj-Rabia S, Faivre L, Sarafan-Vasseur N, Frebourg T. The Rapp-Hodgkin syndrome results from mutations of the TP63 gene. Eur J Hum Genet. 2003 Sep;11(9):700-4. PMID:12939657 doi:http://dx.doi.org/10.1038/sj.ejhg.5201004
- ↑ Kantaputra PN, Hamada T, Kumchai T, McGrath JA. Heterozygous mutation in the SAM domain of p63 underlies Rapp-Hodgkin ectodermal dysplasia. J Dent Res. 2003 Jun;82(6):433-7. PMID:12766194
- ↑ Bertola DR, Kim CA, Albano LM, Scheffer H, Meijer R, van Bokhoven H. Molecular evidence that AEC syndrome and Rapp-Hodgkin syndrome are variable expression of a single genetic disorder. Clin Genet. 2004 Jul;66(1):79-80. PMID:15200513 doi:10.1111/j.0009-9163.2004.00278.x
- ↑ Leoyklang P, Siriwan P, Shotelersuk V. A mutation of the p63 gene in non-syndromic cleft lip. J Med Genet. 2006 Jun;43(6):e28. PMID:16740912 doi:43/6/e28
- ↑ Dumaz N, Milne DM, Meek DW. Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15. FEBS Lett. 1999 Dec 17;463(3):312-6. PMID:10606744
- ↑ Cooper CD, Lampe PD. Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem. 2002 Nov 22;277(47):44962-8. Epub 2002 Sep 20. PMID:12270943 doi:10.1074/jbc.M209427200
- ↑ Li G, Yin H, Kuret J. Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules. J Biol Chem. 2004 Apr 16;279(16):15938-45. Epub 2004 Feb 2. PMID:14761950 doi:10.1074/jbc.M314116200
- ↑ Stoter M, Bamberger AM, Aslan B, Kurth M, Speidel D, Loning T, Frank HG, Kaufmann P, Lohler J, Henne-Bruns D, Deppert W, Knippschild U. Inhibition of casein kinase I delta alters mitotic spindle formation and induces apoptosis in trophoblast cells. Oncogene. 2005 Dec 1;24(54):7964-75. PMID:16027726 doi:10.1038/sj.onc.1208941
- ↑ von Blume J, Knippschild U, Dequiedt F, Giamas G, Beck A, Auer A, Van Lint J, Adler G, Seufferlein T. Phosphorylation at Ser244 by CK1 determines nuclear localization and substrate targeting of PKD2. EMBO J. 2007 Nov 14;26(22):4619-33. Epub 2007 Oct 25. PMID:17962809 doi:10.1038/sj.emboj.7601891
- ↑ Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH. Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem. 2007 Aug 10;282(32):23645-54. Epub 2007 Jun 11. PMID:17562708 doi:10.1074/jbc.M703269200
- ↑ Grozav AG, Chikamori K, Kozuki T, Grabowski DR, Bukowski RM, Willard B, Kinter M, Andersen AH, Ganapathi R, Ganapathi MK. Casein kinase I delta/epsilon phosphorylates topoisomerase IIalpha at serine-1106 and modulates DNA cleavage activity. Nucleic Acids Res. 2009 Feb;37(2):382-92. doi: 10.1093/nar/gkn934. Epub 2008 Nov , 29. PMID:19043076 doi:10.1093/nar/gkn934
- ↑ Giamas G, Castellano L, Feng Q, Knippschild U, Jacob J, Thomas RS, Coombes RC, Smith CL, Jiao LR, Stebbing J. CK1delta modulates the transcriptional activity of ERalpha via AIB1 in an estrogen-dependent manner and regulates ERalpha-AIB1 interactions. Nucleic Acids Res. 2009 May;37(9):3110-23. doi: 10.1093/nar/gkp136. Epub 2009 Apr, 1. PMID:19339517 doi:10.1093/nar/gkp136
- ↑ Smal C, Vertommen D, Amsailale R, Arts A, Degand H, Morsomme P, Rider MH, Neste EV, Bontemps F. Casein kinase 1delta activates human recombinant deoxycytidine kinase by Ser-74 phosphorylation, but is not involved in the in vivo regulation of its activity. Arch Biochem Biophys. 2010 Oct 1;502(1):44-52. doi: 10.1016/j.abb.2010.07.009., Epub 2010 Jul 14. PMID:20637175 doi:10.1016/j.abb.2010.07.009
- ↑ Venerando A, Marin O, Cozza G, Bustos VH, Sarno S, Pinna LA. Isoform specific phosphorylation of p53 by protein kinase CK1. Cell Mol Life Sci. 2010 Apr;67(7):1105-18. doi: 10.1007/s00018-009-0236-7. Epub, 2009 Dec 30. PMID:20041275 doi:10.1007/s00018-009-0236-7
- ↑ Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010 Jan 1;24(1):72-85. doi: 10.1101/gad.1843810. PMID:20048001 doi:10.1101/gad.1843810
- ↑ Kalousi A, Mylonis I, Politou AS, Chachami G, Paraskeva E, Simos G. Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. J Cell Sci. 2010 Sep 1;123(Pt 17):2976-86. doi: 10.1242/jcs.068122. Epub 2010 Aug, 10. PMID:20699359 doi:10.1242/jcs.068122
- ↑ Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, Gibbs JE, Dupre SM, Chesham JE, Rajamohan F, Knafels J, Sneed B, Zawadzke LE, Ohren JF, Walton KM, Wager TT, Hastings MH, Loudon AS. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15240-5. doi:, 10.1073/pnas.1005101107. Epub 2010 Aug 9. PMID:20696890 doi:10.1073/pnas.1005101107
- ↑ Sprouse J, Reynolds L, Kleiman R, Tate B, Swanson TA, Pickard GE. Chronic treatment with a selective inhibitor of casein kinase I delta/epsilon yields cumulative phase delays in circadian rhythms. Psychopharmacology (Berl). 2010 Jul;210(4):569-76. doi:, 10.1007/s00213-010-1860-5. Epub 2010 Apr 21. PMID:20407760 doi:10.1007/s00213-010-1860-5
- ↑ Biswas A, Mukherjee S, Das S, Shields D, Chow CW, Maitra U. Opposing action of casein kinase 1 and calcineurin in nucleo-cytoplasmic shuttling of mammalian translation initiation factor eIF6. J Biol Chem. 2011 Jan 28;286(4):3129-38. doi: 10.1074/jbc.M110.188565. Epub 2010 , Nov 17. PMID:21084295 doi:10.1074/jbc.M110.188565
- ↑ Greer YE, Rubin JS. Casein kinase 1 delta functions at the centrosome to mediate Wnt-3a-dependent neurite outgrowth. J Cell Biol. 2011 Mar 21;192(6):993-1004. doi: 10.1083/jcb.201011111. PMID:21422228 doi:10.1083/jcb.201011111
- ↑ Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998 Sep;2(3):305-16. PMID:9774969
- ↑ Sasaki Y, Ishida S, Morimoto I, Yamashita T, Kojima T, Kihara C, Tanaka T, Imai K, Nakamura Y, Tokino T. The p53 family member genes are involved in the Notch signal pathway. J Biol Chem. 2002 Jan 4;277(1):719-24. Epub 2001 Oct 18. PMID:11641404 doi:10.1074/jbc.M108080200
- ↑ Serber Z, Lai HC, Yang A, Ou HD, Sigal MS, Kelly AE, Darimont BD, Duijf PH, Van Bokhoven H, McKeon F, Dotsch V. A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Mol Cell Biol. 2002 Dec;22(24):8601-11. PMID:12446779
- ↑ Ghioni P, Bolognese F, Duijf PH, Van Bokhoven H, Mantovani R, Guerrini L. Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol Cell Biol. 2002 Dec;22(24):8659-68. PMID:12446784
- ↑ Zeng SX, Dai MS, Keller DM, Lu H. SSRP1 functions as a co-activator of the transcriptional activator p63. EMBO J. 2002 Oct 15;21(20):5487-97. PMID:12374749
- ↑ Heyne K, Willnecker V, Schneider J, Conrad M, Raulf N, Schule R, Roemer K. NIR, an inhibitor of histone acetyltransferases, regulates transcription factor TAp63 and is controlled by the cell cycle. Nucleic Acids Res. 2010 Jun;38(10):3159-71. doi: 10.1093/nar/gkq016. Epub 2010, Jan 31. PMID:20123734 doi:10.1093/nar/gkq016
- ↑ Mitchell K, O'Sullivan J, Missero C, Blair E, Richardson R, Anderson B, Antonini D, Murray JC, Shanske AL, Schutte BC, Romano RA, Sinha S, Bhaskar SS, Black GC, Dixon J, Dixon MJ. Exome sequence identifies RIPK4 as the Bartsocas-Papas syndrome locus. Am J Hum Genet. 2012 Jan 13;90(1):69-75. doi: 10.1016/j.ajhg.2011.11.013. Epub, 2011 Dec 22. PMID:22197488 doi:10.1016/j.ajhg.2011.11.013
- ↑ Gebel J, Tuppi M, Chaikuad A, Hotte K, Schroder M, Schulz L, Lohr F, Gutfreund N, Finke F, Henrich E, Mezhyrova J, Lehnert R, Pampaloni F, Hummer G, Stelzer EHK, Knapp S, Dotsch V. p63 uses a switch-like mechanism to set the threshold for induction of apoptosis. Nat Chem Biol. 2020 Jul 27. pii: 10.1038/s41589-020-0600-3. doi:, 10.1038/s41589-020-0600-3. PMID:32719556 doi:http://dx.doi.org/10.1038/s41589-020-0600-3
| |