Cytochrome c co-crystallized with 20 eq. sulfonato-calix[8]arene and 15 eq. spermine - structure IICytochrome c co-crystallized with 20 eq. sulfonato-calix[8]arene and 15 eq. spermine - structure II

Structural highlights

6rsk is a 2 chain structure with sequence from Baker's yeast. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Gene:CYC1, YJR048W, J1653 (Baker's yeast)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[CYC1_YEAST] Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain.

Publication Abstract from PubMed

Protein crystals with their precise, periodic array of functional building blocks have potential applications in biomaterials, sensing, and catalysis. This paper describes how a highly porous crystalline framework of a cationic redox protein and an anionic macrocycle can be modulated by a small cationic effector. Ternary composites of protein ( approximately 13 kDa), calix[8]arene ( approximately 1.5 kDa), and effector ( approximately 0.2 kDa) formed distinct crystalline architectures, dependent on the effector concentration and the crystallization technique. A combination of X-ray crystallography and density functional theory (DFT) calculations was used to decipher the framework variations, which appear to be dependent on a calixarene conformation change mediated by the effector. This "switch" calixarene was observed in three states, each of which is associated with a different interaction network. Two structures obtained by co-crystallization with the effector contained an additional protein "pillar", resulting in framework duplication and decreased porosity. These results suggest how protein assembly can be engineered by supramolecular host-guest interactions.

Tuning Protein Frameworks via Auxiliary Supramolecular Interactions.,Engilberge S, Rennie ML, Dumont E, Crowley PB ACS Nano. 2019 Sep 24;13(9):10343-10350. doi: 10.1021/acsnano.9b04115. Epub 2019 , Sep 10. PMID:31490058[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Engilberge S, Rennie ML, Dumont E, Crowley PB. Tuning Protein Frameworks via Auxiliary Supramolecular Interactions. ACS Nano. 2019 Sep 24;13(9):10343-10350. doi: 10.1021/acsnano.9b04115. Epub 2019 , Sep 10. PMID:31490058 doi:http://dx.doi.org/10.1021/acsnano.9b04115

6rsk, resolution 2.31Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA