4s0r

From Proteopedia
Revision as of 13:37, 15 March 2023 by OCA (talk | contribs)
Jump to navigation Jump to search

Structure of GS-TnrA complexStructure of GS-TnrA complex

Structural highlights

4s0r is a 28 chain structure with sequence from Bacillus subtilis subsp. subtilis str. 168. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GLN1A_BACSU Glutamine synthetase (GS) is an unusual multitasking protein that functions as an enzyme, a transcription coregulator, and a chaperone in ammonium assimilation and in the regulation of genes involved in nitrogen metabolism (PubMed:25691471). It catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia (PubMed:24158439). Feedback-inhibited GlnA interacts with and regulates the activity of the transcriptional regulator TnrA (PubMed:11719184, PubMed:12139611). During nitrogen limitation, TnrA is in its DNA-binding active state and turns on the transcription of genes required for nitrogen assimilation (PubMed:11719184, PubMed:12139611, PubMed:25691471). Under conditions of nitrogen excess, feedback-inhibited GlnA forms a stable complex with TnrA, which inhibits its DNA-binding activity (PubMed:11719184, PubMed:12139611, PubMed:25691471). In contrast, feedback-inhibited GlnA acts as a chaperone to stabilize the DNA-binding activity of GlnR, which represses the transcription of nitrogen assimilation genes (PubMed:25691471).[1] [2] [3] [4]

Publication Abstract from PubMed

All cells must sense and adapt to changing nutrient availability. However, detailed molecular mechanisms coordinating such regulatory pathways remain poorly understood. In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA, which is deactivated by feedback-inhibited glutamine synthetase (GS) during nitrogen excess and stabilized by GlnK upon nitrogen depletion, and the repressor GlnR. Here we describe a complete molecular dissection of this network. TnrA and GlnR, the global nitrogen homeostatic transcription regulators, are revealed as founders of a new structural family of dimeric DNA-binding proteins with C-terminal, flexible, effector-binding sensors that modulate their dimerization. Remarkably, the TnrA sensor domains insert into GS intersubunit catalytic pores, destabilizing the TnrA dimer and causing an unprecedented GS dodecamer-to-tetradecamer conversion, which concomitantly deactivates GS. In contrast, each subunit of the GlnK trimer "templates" active TnrA dimers. Unlike TnrA, GlnR sensors mediate an autoinhibitory dimer-destabilizing interaction alleviated by GS, which acts as a GlnR chaperone. Thus, these studies unveil heretofore unseen mechanisms by which inducible sensor domains drive metabolic reprograming in the model Gram-positive bacterium B. subtilis.

Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis.,Schumacher MA, Chinnam NB, Cuthbert B, Tonthat NK, Whitfill T Genes Dev. 2015 Feb 15;29(4):451-64. doi: 10.1101/gad.254714.114. PMID:25691471[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wray LV Jr, Zalieckas JM, Fisher SH. Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA. Cell. 2001 Nov 16;107(4):427-35. PMID:11719184
  2. Fisher SH, Brandenburg JL, Wray LV Jr. Mutations in Bacillus subtilis glutamine synthetase that block its interaction with transcription factor TnrA. Mol Microbiol. 2002 Aug;45(3):627-35. doi: 10.1046/j.1365-2958.2002.03054.x. PMID:12139611 doi:http://dx.doi.org/10.1046/j.1365-2958.2002.03054.x
  3. Murray DS, Chinnam N, Tonthat NK, Whitfill T, Wray LV, Fisher SH, Schumacher MA. Structures of the B. subtilis glutamine synthetase dodecamer reveal large intersubunit catalytic conformational changes linked to a unique feedback inhibition mechanism. J Biol Chem. 2013 Oct 24. PMID:24158439 doi:http://dx.doi.org/10.1074/jbc.M113.519496
  4. Schumacher MA, Chinnam NB, Cuthbert B, Tonthat NK, Whitfill T. Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis. Genes Dev. 2015 Feb 15;29(4):451-64. doi: 10.1101/gad.254714.114. PMID:25691471 doi:http://dx.doi.org/10.1101/gad.254714.114
  5. Schumacher MA, Chinnam NB, Cuthbert B, Tonthat NK, Whitfill T. Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis. Genes Dev. 2015 Feb 15;29(4):451-64. doi: 10.1101/gad.254714.114. PMID:25691471 doi:http://dx.doi.org/10.1101/gad.254714.114

4s0r, resolution 3.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA