Crystal structure of the D. melanogaster eIF4E-eIF4G complexCrystal structure of the D. melanogaster eIF4E-eIF4G complex

Structural highlights

5t47 is a 4 chain structure with sequence from Drome. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:eIF-4E, Eif4e, EIF4F, CG4035 (DROME), eIF4G, eIF-4G, eIF4G-RA, CG10811, Dmel_CG10811 (DROME)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[IF4E_DROME] Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures.[1]

Publication Abstract from PubMed

Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease.

The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation.,Gruner S, Peter D, Weber R, Wohlbold L, Chung MY, Weichenrieder O, Valkov E, Igreja C, Izaurralde E Mol Cell. 2016 Oct 19. pii: S1097-2765(16)30569-X. doi:, 10.1016/j.molcel.2016.09.020. PMID:27773676[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lavoie CA, Lachance PE, Sonenberg N, Lasko P. Alternatively spliced transcripts from the Drosophila eIF4E gene produce two different Cap-binding proteins. J Biol Chem. 1996 Jul 5;271(27):16393-8. PMID:8663200
  2. Gruner S, Peter D, Weber R, Wohlbold L, Chung MY, Weichenrieder O, Valkov E, Igreja C, Izaurralde E. The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation. Mol Cell. 2016 Oct 19. pii: S1097-2765(16)30569-X. doi:, 10.1016/j.molcel.2016.09.020. PMID:27773676 doi:http://dx.doi.org/10.1016/j.molcel.2016.09.020

5t47, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA