5eol
Crystal structure of human Pim-1 kinase in complex with a macrocyclic quinoxaline-pyrrolodihydropiperidinone inhibitorCrystal structure of human Pim-1 kinase in complex with a macrocyclic quinoxaline-pyrrolodihydropiperidinone inhibitor
Structural highlights
Function[PIM1_HUMAN] Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation and thus providing a selective advantage in tumorigenesis. Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression and by phosphorylation and inhibition of proapoptotic proteins (BAD, MAP3K5, FOXO3). Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase of transcriptional activity. The stabilization of MYC exerted by PIM1 might explain partly the strong synergism between these two oncogenes in tumorigenesis. Mediates survival signaling through phosphorylation of BAD, which induces release of the anti-apoptotic protein Bcl-X(L)/BCL2L1. Phosphorylation of MAP3K5, an other proapoptotic protein, by PIM1, significantly decreases MAP3K5 kinase activity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK subsequently reducing caspase-3 activation and cell apoptosis. Stimulates cell cycle progression at the G1-S and G2-M transitions by phosphorylation of CDC25A and CDC25C. Phosphorylation of CDKN1A, a regulator of cell cycle progression at G1, results in the relocation of CDKN1A to the cytoplasm and enhanced CDKN1A protein stability. Promote cell cycle progression and tumorigenesis by down-regulating expression of a regulator of cell cycle progression, CDKN1B, at both transcriptional and post-translational levels. Phosphorylation of CDKN1B,induces 14-3-3-proteins binding, nuclear export and proteasome-dependent degradation. May affect the structure or silencing of chromatin by phosphorylating HP1 gamma/CBX3. Acts also as a regulator of homing and migration of bone marrow cells involving functional interaction with the CXCL12-CXCR4 signaling axis.[1] [2] [3] [4] [5] [6] [7] Publication Abstract from PubMedThe identification of Pim-1/2 kinase overexpression in B-cell malignancies suggests that Pim kinase inhibitors will have utility in the treatment of lymphoma, leukemia, and multiple myeloma. Starting from a moderately potent quinoxaline-dihydropyrrolopiperidinone lead, we recognized the potential for macrocyclization and developed a series of 13-membered macrocycles. The structure-activity relationships of the macrocyclic linker were systematically explored, leading to the identification of 9c as a potent, subnanomolar inhibitor of Pim-1 and -2. This molecule also potently inhibited Pim kinase activity in KMS-12-BM, a multiple myeloma cell line with relatively high endogenous levels of Pim-1/2, both in vitro (pBAD IC50 = 25 nM) and in vivo (pBAD EC50 = 30 nM, unbound), and a 100 mg/kg daily dose was found to completely arrest the growth of KMS-12-BM xenografts in mice. Discovery and Optimization of Macrocyclic Quinoxaline-pyrrolo-dihydropiperidinones as Potent Pim-1/2 Kinase Inhibitors.,Cee VJ, Chavez F Jr, Herberich B, Lanman BA, Pettus LH, Reed AB, Wu B, Wurz RP, Andrews KL, Chen J, Hickman D, Laszlo J 3rd, Lee MR, Guerrero N, Mattson BK, Nguyen Y, Mohr C, Rex K, Sastri CE, Wang P, Wu Q, Wu T, Xu Y, Zhou Y, Winston JT, Lipford JR, Tasker AS, Wang HL ACS Med Chem Lett. 2016 Feb 12;7(4):408-12. doi: 10.1021/acsmedchemlett.5b00403. , eCollection 2016 Apr 14. PMID:27096050[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|