2vpe

From Proteopedia
Revision as of 04:01, 8 February 2016 by OCA (talk | contribs)
Jump to navigation Jump to search

DECODING OF METHYLATED HISTONE H3 TAIL BY THE PYGO-BCL9 WNT SIGNALING COMPLEXDECODING OF METHYLATED HISTONE H3 TAIL BY THE PYGO-BCL9 WNT SIGNALING COMPLEX

Structural highlights

2vpe is a 6 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Disease

[BCL9_HUMAN] Note=A chromosomal aberration involving BCL9 is found in a patient with precusor B-cell acute lymphoblastic leukemia (ALL). Translocation t(1;14)(q21;q32). This translocation leaves the coding region intact, but may have pathogenic effects due to alterations in the expression level of BCL9. Several cases of translocations within the 3'-UTR of BCL9 have been found in B-cell malignancies.

Function

[BCL9_HUMAN] Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity).[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Pygo and BCL9/Legless transduce the Wnt signal by promoting the transcriptional activity of beta-catenin/Armadillo in normal and malignant cells. We show that human and Drosophila Pygo PHD fingers associate with their cognate HD1 domains from BCL9/Legless to bind specifically to the histone H3 tail methylated at lysine 4 (H3K4me). The crystal structures of ternary complexes between PHD, HD1, and two different H3K4me peptides reveal a unique mode of histone tail recognition: efficient histone binding requires HD1 association, and the PHD-HD1 complex binds preferentially to H3K4me2 while displaying insensitivity to methylation of H3R2. Therefore, this is a prime example of histone tail binding by a PHD finger (of Pygo) being modulated by a cofactor (BCL9/Legless). Rescue experiments in Drosophila indicate that Wnt signaling outputs depend on histone decoding. The specificity of this process provided by the Pygo-BCL9/Legless complex suggests that this complex facilitates an early step in the transition from gene silence to Wnt-induced transcription.

Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex.,Fiedler M, Sanchez-Barrena MJ, Nekrasov M, Mieszczanek J, Rybin V, Muller J, Evans P, Bienz M Mol Cell. 2008 May 23;30(4):507-18. PMID:18498752[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Zullig S, Basler K. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell. 2002 Apr 5;109(1):47-60. PMID:11955446
  2. Fiedler M, Sanchez-Barrena MJ, Nekrasov M, Mieszczanek J, Rybin V, Muller J, Evans P, Bienz M. Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex. Mol Cell. 2008 May 23;30(4):507-18. PMID:18498752 doi:10.1016/j.molcel.2008.03.011

2vpe, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA