3znh

From Proteopedia
Revision as of 17:18, 25 December 2014 by OCA (talk | contribs)
Jump to navigation Jump to search

Crimean Congo Hemorrhagic Fever Virus OTU domain in complex with ubiquitin-propargyl.Crimean Congo Hemorrhagic Fever Virus OTU domain in complex with ubiquitin-propargyl.

Structural highlights

3znh is a 2 chain structure with sequence from Cchfi. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
NonStd Res:
Activity:Ubiquitinyl hydrolase 1, with EC number 3.4.19.12
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[L_CCHFI] Displays RNA-directed RNA polymerase, deubiquitinating and deISGylase activities. RNA-dependent RNA polymerase is responsible for replication and transcription of the viral RNA genome. The deubiquitinating activity cleaves both ubiquitinated and ISGylated products and may therefore regulate ubiquitin and ISG15 dependent innate immunity. [UBB_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[1] [2]

Publication Abstract from PubMed

Active-site directed probes are powerful in studies of enzymatic function. We report an active-site directed probe based on a warhead so far considered unreactive. By replacing the C-terminal carboxylate of ubiquitin (Ub) with an alkyne functionality, a selective reaction with the active-site cysteine residue of de-ubiquitinating enzymes was observed. The resulting product was shown to be a quaternary vinyl thioether, as determined by X-ray crystallography. Proteomic analysis of proteins bound to an immobilized Ub alkyne probe confirmed the selectivity toward de-ubiquitinating enzymes. The observed reactivity is not just restricted to propargylated Ub, as highlighted by the selective reaction between caspase-1 (interleukin converting enzyme) and a propargylated peptide derived from IL-1beta, a caspase-1 substrate.

On Terminal Alkynes That Can React with Active-Site Cysteine Nucleophiles in Proteases.,Ekkebus R, van Kasteren SI, Kulathu Y, Scholten A, Berlin I, Geurink PP, de Jong A, Goerdayal S, Neefjes J, Heck AJ, Komander D, Ovaa H J Am Chem Soc. 2013 Feb 15. PMID:23387960[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
  2. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
  3. Ekkebus R, van Kasteren SI, Kulathu Y, Scholten A, Berlin I, Geurink PP, de Jong A, Goerdayal S, Neefjes J, Heck AJ, Komander D, Ovaa H. On Terminal Alkynes That Can React with Active-Site Cysteine Nucleophiles in Proteases. J Am Chem Soc. 2013 Feb 15. PMID:23387960 doi:http://dx.doi.org/10.1021/ja309802n

3znh, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA