2e1p
Crystal structure of pro-Tk-subtilisin
| |||||||
, resolution 2.30Å | |||||||
---|---|---|---|---|---|---|---|
Ligands: | |||||||
Activity: | Subtilisin, with EC number 3.4.21.62 | ||||||
Coordinates: | save as pdb, mmCIF, xml |
OverviewOverview
The crystal structure of an active site mutant of pro-Tk-subtilisin (pro-S324A) from the hyperthermophilic archaeon Thermococcus kodakaraensis was determined at 2.3 A resolution. The overall structure of this protein is similar to those of bacterial subtilisin-propeptide complexes, except that the peptide bond linking the propeptide and mature domain contacts with the active site, and the mature domain contains six Ca2+ binding sites. The Ca-1 site is conserved in bacterial subtilisins but is formed prior to autoprocessing, unlike the corresponding sites of bacterial subtilisins. All other Ca2+-binding sites are unique in the pro-S324A structure and are located at the surface loops. Four of them apparently contribute to the stability of the central alphabetaalpha substructure of the mature domain. The CD spectra, 1-anilino-8-naphthalenesulfonic acid fluorescence spectra, and sensitivities to chymotryptic digestion of this protein indicate that the conformation of pro-S324A is changed from an unstable molten globule-like structure to a stable native one upon Ca2+ binding. Another active site mutant, pro-S324C, was shown to be autoprocessed to form a propeptide-mature domain complex in the presence of Ca2+. The CD spectra of this protein indicate that the structure of pro-S324C is changed upon Ca2+ binding like pro-S324A but is not seriously changed upon subsequent autoprocessing. These results suggest that the maturation process of Tk-subtilisin is different from that of bacterial subtilisins in terms of the requirement of Ca2+ for folding of the mature domain and completion of the folding process prior to autoprocessing.
About this StructureAbout this Structure
2E1P is a Single protein structure of sequence from Thermococcus kodakarensis. Full crystallographic information is available from OCA.
ReferenceReference
Crystal structure of unautoprocessed precursor of subtilisin from a hyperthermophilic archaeon: evidence for Ca2+-induced folding., Tanaka S, Saito K, Chon H, Matsumura H, Koga Y, Takano K, Kanaya S, J Biol Chem. 2007 Mar 16;282(11):8246-55. Epub 2007 Jan 19. PMID:17237225
Page seeded by OCA on Thu Mar 20 16:34:06 2008