Structure of Beta-Phosphoglucomutase inhibited with Glucose-6- phosphonate and Aluminium tetrafluorideStructure of Beta-Phosphoglucomutase inhibited with Glucose-6- phosphonate and Aluminium tetrafluoride

Structural highlights

2wf7 is a 1 chain structure with sequence from "bacterium_lactis"_lister_1873 "bacterium lactis" lister 1873. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Related:1z4n, 1z4o, 2wf6, 1o03, 2wf5, 1zol, 2wfa, 1o08, 1lvh, 2wf8, 2wf9, 4c4r
Activity:Beta-phosphoglucomutase, with EC number 5.4.2.6
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

beta-Phosphoglucomutase (betaPGM) catalyzes isomerization of beta-d-glucose 1-phosphate (betaG1P) into d-glucose 6-phosphate (G6P) via sequential phosphoryl transfer steps using a beta-d-glucose 1,6-bisphosphate (betaG16BP) intermediate. Synthetic fluoromethylenephosphonate and methylenephosphonate analogs of betaG1P deliver novel step 1 transition state analog (TSA) complexes for betaPGM, incorporating trifluoromagnesate and tetrafluoroaluminate surrogates of the phosphoryl group. Within an invariant protein conformation, the beta-d-glucopyranose ring in the betaG1P TSA complexes (step 1) is flipped over and shifted relative to the G6P TSA complexes (step 2). Its equatorial hydroxyl groups are hydrogen-bonded directly to the enzyme rather than indirectly via water molecules as in step 2. The (C)O-P bond orientation for binding the phosphate in the inert phosphate site differs by approximately 30 degrees between steps 1 and 2. By contrast, the orientations for the axial O-Mg-O alignment for the TSA of the phosphoryl group in the catalytic site differ by only approximately 5 degrees , and the atoms representing the five phosphorus-bonded oxygens in the two transition states (TSs) are virtually superimposable. The conformation of betaG16BP in step 1 does not fit into the same invariant active site for step 2 by simple positional interchange of the phosphates: the TS alignment is achieved by conformational change of the hexose rather than the protein.

alpha-Fluorophosphonates reveal how a phosphomutase conserves transition state conformation over hexose recognition in its two-step reaction.,Jin Y, Bhattasali D, Pellegrini E, Forget SM, Baxter NJ, Cliff MJ, Bowler MW, Jakeman DL, Blackburn GM, Waltho JP Proc Natl Acad Sci U S A. 2014 Aug 7. pii: 201402850. PMID:25104750[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Jin Y, Bhattasali D, Pellegrini E, Forget SM, Baxter NJ, Cliff MJ, Bowler MW, Jakeman DL, Blackburn GM, Waltho JP. alpha-Fluorophosphonates reveal how a phosphomutase conserves transition state conformation over hexose recognition in its two-step reaction. Proc Natl Acad Sci U S A. 2014 Aug 7. pii: 201402850. PMID:25104750 doi:http://dx.doi.org/10.1073/pnas.1402850111

2wf7, resolution 1.05Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA