1yd8

From Proteopedia
Revision as of 00:48, 29 September 2014 by OCA (talk | contribs)
Jump to navigation Jump to search

COMPLEX OF HUMAN GGA3 GAT DOMAIN AND UBIQUITINCOMPLEX OF HUMAN GGA3 GAT DOMAIN AND UBIQUITIN

Structural highlights

1yd8 is a 4 chain structure with sequence from Bos taurus and Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:GGA3, KIAA0154 (Homo sapiens)
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The Golgi-localized, gamma-ear-containing, Arf (ADP-ribosylation factor)-binding (GGA) proteins are clathrin adaptors that mediate the sorting of transmembrane-cargo molecules at the trans-Golgi network and endosomes. Cargo proteins can be directed into the GGA pathway by at least two different types of sorting signals: acidic cluster-dileucine motifs and covalent modification by ubiquitin. The latter modification is recognized by the GGAs through binding to their GAT [GGA and TOM (target of Myb)] domain. Here we report the crystal structure of the GAT domain of human GGA3 in a 1:1 complex with ubiquitin at 2.8-A resolution. Ubiquitin binds to a hydrophobic and acidic patch on helices alpha1 and alpha2 of the GAT three-helix bundle that includes Asn-223, Leu-227, Glu-230, Met-231, Asp-244, Glu-246, Leu-247, Glu-250, and Leu-251. The GAT-binding surface on ubiquitin is a hydrophobic patch centered on Ile-44 that is also responsible for binding most other ubiquitin effectors. The ubiquitin-binding site observed in the crystal is distinct from the Rabaptin-5-binding site on helices alpha2 and alpha3 of the GAT domain. Mutational analysis and modeling of the ubiquitin-Rabaptin-5-GAT ternary complex indicates that ubiquitin and Rabaptin-5 can bind to the GAT domain at two different sites without any steric conflict. This ability highlights the GAT domain as a hub for interactions with multiple partners in trafficking.

Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins.,Prag G, Lee S, Mattera R, Arighi CN, Beach BM, Bonifacino JS, Hurley JH Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2334-9. Epub 2005 Feb 8. PMID:15701688[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Prag G, Lee S, Mattera R, Arighi CN, Beach BM, Bonifacino JS, Hurley JH. Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2334-9. Epub 2005 Feb 8. PMID:15701688

1yd8, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA