Nitric Oxide Synthase: Difference between revisions

Line 77: Line 77:




The reductase domain is, as mentioned, bound to an oxygenase domain by a calmodulin linker. This linker responds to Ca2+ -ions (constitutive NOS isoforms).  The calmodulin linker is consists of 32 residues and contains a binding region for the Ca2+-ions. This binding is found to be crucial it induces a conformational change which is essential for the electron transfer. It is important to emphasize that the electron transfer occurs from the reductase domain of one subunit to the oxygenase domain of the opposite subunit (i.e. a trans transfer).  The conformational change induced by Ca2+-ions brings the mentioned reductase and oxygenase  domains closer together, therefore the linker acts like a hinge. The electron transfer occurs two times per produced NO molecule, first electrons are passed on for the conversion of L-Arginine to its intermediate, secondly for the conversion of the intermediate to produce Citruline and NO. In general the reductase domain can be divided into three binding domains: the NADPH binding domain, the FAD binding domain, and the FMN binding domain. The NADPH and FAD binding domains are associated whereas the FAD and FMN domains are connected by an α-helical binding domain. An electron is donated by NADPH, which passes the electron on to FAD. FAD shuttles on the electron to FMN. The FMN binding domain is a flexible domain and here the conformational change occurs, the Calmodulin linker rotates the reductase domain and oxygenase domain along a vertical axis, thus bringing the reductase domain closer to the opposite oxygenase domain. The electron can then due to shorter distance be passed on the the Heme group bound by the oxygenase domain.
The reductase domain is, as mentioned, bound to an oxygenase domain by a calmodulin linker. This linker responds to Ca2+ -ions (constitutive NOS isoforms).  The calmodulin linker is consists of 32 residues and contains a binding region for the Ca2+-ions. This binding is found to be crucial it induces a conformational change which is essential for the electron transfer. It is important to emphasize that the electron transfer occurs from the reductase domain of one subunit to the oxygenase domain of the opposite subunit (i.e. a trans transfer).  The conformational change induced by Ca2+-ions brings the mentioned reductase and oxygenase  domains closer together, therefore the linker acts like a hinge. The electron transfer occurs two times per produced NO molecule, first electrons are passed on for the conversion of L-Arginine to its intermediate, secondly for the conversion of the intermediate to produce Citruline and NO. In general the reductase domain can be divided into three binding domains: the NADPH binding domain, the FAD binding domain, and the FMN binding domain. The NADPH and FAD binding domains are associated whereas the FAD and FMN domains are connected by an α-helical binding domain. An electron is donated by NADPH, which passes the electron on to FAD. FAD shuttles on the electron to FMN. The FMN binding domain is a flexible domain and here the conformational change occurs, the Calmodulin linker rotates the reductase domain and oxygenase domain along a vertical axis, thus bringing the reductase domain closer to the opposite oxygenase domain. The electron can then due to shorter distance be passed on the the Heme group bound by the oxygenase domain <ref>PMID: 15208315</ref>.
 
<ref>PMID: 15208315</ref>


==References==
==References==
<references/>
<references/>

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Michael Skovbo Windahl, Sara Toftegaard Petersen, Mathilde Thomsen, Mette Trauelsen, Eran Hodis, Jaime Prilusky, Karl Oberholser, Alexander Berchansky, Michal Harel, Ann Taylor