Prion protein: Difference between revisions

point mutations
No edit summary
Line 11: Line 11:
PrP<sup>C</sup> has a natively unstructured N-terminal region, and a predominantly α-helical C-terminal region from residues ~120-230, containing three α-helices and two short <scene name='Prion_protein/Cartoon/3'>β-strands</scene>. A <scene name='Prion_protein/1hjm_disulfide_bond/4'>single disulfide bond</scene> connects the middle of helices 2 and 3. The presence of the N-terminal region has little impact on the structure of the C-terminal domain <ref>Zahn, R ''et al.'' (2000) NMR solution structure of the human prion protein ''Proc. Natl. Acad. Sci. USA''  '''97''', 145-150</ref>. The structure of PrP<sup>C</sup> is highly conserved amongst mammals, and only differs slightly in birds, reptiles and amphibians<ref>Calzolai, L ''et al.'' (2005) Prion protein NMR structures of chicken, turtle, and frog ''Proc. Natl. Acad. Sci. USA'' '''102''', 651-655</ref>.
PrP<sup>C</sup> has a natively unstructured N-terminal region, and a predominantly α-helical C-terminal region from residues ~120-230, containing three α-helices and two short <scene name='Prion_protein/Cartoon/3'>β-strands</scene>. A <scene name='Prion_protein/1hjm_disulfide_bond/4'>single disulfide bond</scene> connects the middle of helices 2 and 3. The presence of the N-terminal region has little impact on the structure of the C-terminal domain <ref>Zahn, R ''et al.'' (2000) NMR solution structure of the human prion protein ''Proc. Natl. Acad. Sci. USA''  '''97''', 145-150</ref>. The structure of PrP<sup>C</sup> is highly conserved amongst mammals, and only differs slightly in birds, reptiles and amphibians<ref>Calzolai, L ''et al.'' (2005) Prion protein NMR structures of chicken, turtle, and frog ''Proc. Natl. Acad. Sci. USA'' '''102''', 651-655</ref>.
The vast majority of structures have been determined by NMR spectroscopy, but two structures have been reported by X-ray crystallography. In sheep PrP, the X-ray structure is similar to those determined by NMR spectroscopy, however in human PrP, the X-ray structure is a dimer in which helix 3 is swapped between monomers, and the disulphide bond is rearranged to be intermolecular between the dimer subunits.
The vast majority of structures have been determined by NMR spectroscopy, but two structures have been reported by X-ray crystallography. In sheep PrP, the X-ray structure is similar to those determined by NMR spectroscopy, however in human PrP, the X-ray structure is a dimer in which helix 3 is swapped between monomers, and the disulphide bond is rearranged to be intermolecular between the dimer subunits.
<scene name='Prion_protein/Green_n-term/1'>test green part</scene>


==Models of PrP<sup>Sc</sup> structure==
==Models of PrP<sup>Sc</sup> structure==

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Kurt Giles, Jaime Prilusky, Eran Hodis, Claudio Garutti, Michal Harel, Joel L. Sussman