Sandbox108: Difference between revisions
Taewang Lee (talk | contribs) No edit summary |
Taewang Lee (talk | contribs) |
||
Line 9: | Line 9: | ||
Tertiary structure of protein is characterized by the “global” folding of a polypeptide chain [http://www.stanford.edu/group/pandegroup/folding/education/prstruc.html] and has two domains in refined atomic model of glutamine synthetase from Salmonella typhimurium. Hydrophobic interaction is a major driving force determining the most tertiary structure of the proteins. [http://www.stanford.edu/group/pandegroup/folding/education/prstruc.html] Hydrogen bonding is crucial in stabilizing the tertiary structure as well. [http://webhost.bridgew.edu/fgorga/proteins/proteins.htm] Also, disulfide bonds between cysteine residues stabilize the tertiary structure. [http://webhost.bridgew.edu/fgorga/proteins/proteins.htm] However, for glutamine synthetase for Salmonella, the most important interaction will be the helix-helix interactions. | Tertiary structure of protein is characterized by the “global” folding of a polypeptide chain [http://www.stanford.edu/group/pandegroup/folding/education/prstruc.html] and has two domains in refined atomic model of glutamine synthetase from Salmonella typhimurium. Hydrophobic interaction is a major driving force determining the most tertiary structure of the proteins. [http://www.stanford.edu/group/pandegroup/folding/education/prstruc.html] Hydrogen bonding is crucial in stabilizing the tertiary structure as well. [http://webhost.bridgew.edu/fgorga/proteins/proteins.htm] Also, disulfide bonds between cysteine residues stabilize the tertiary structure. [http://webhost.bridgew.edu/fgorga/proteins/proteins.htm] However, for glutamine synthetase for Salmonella, the most important interaction will be the helix-helix interactions. | ||
Glutamine synthetase from Salmonella has twenty three helix-helix interactions and is four different types of interactions. [http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=2gls&template=protein.html&o=HELIX_INTERACTIONS&l=1&s=1&c=7&chain=A] <scene name='Sandbox108/Hydrophobic/1'>Hydrophobic (purple)</scene> | Glutamine synthetase from Salmonella has twenty three helix-helix interactions, and is four different types of interactions. [http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=2gls&template=protein.html&o=HELIX_INTERACTIONS&l=1&s=1&c=7&chain=A] <scene name='Sandbox108/Hydrophobic/1'>Hydrophobic(purple)</scene> and <scene name='Sandbox108/Polar/1'>polar (blue)</scene> regions of the protein residues are represented by deep blue color. | ||
is within uncharged polar <insert wiki showing the uncharged polar groups>. Usually, uncharged polar groups are classified as hydrophilic <insert wiki showing the hydrophilic> that is found on the outside of proteins. Also, amino acids with the character of acidic or basic side chains are polar, showing on the outside of molecules <insert wiki showing the polar>. For glutamine, its side chain is uncharged and formed by replacing the hydroxyl of glutamic acid with an amine functional group. [http://en.wikipedia.org/wiki/Glutamine] In the other hand, glutamine has no side chain on non-polar group, however the side chain on non-polar groups of the proteins usually tends to be hydrophobic <insert wiki showing the hydrophobic of cysteine> and to cluster together on the inside.[http://www.bmb.uga.edu/wampler/tutorial/prot3.html] | is within uncharged polar <insert wiki showing the uncharged polar groups>. Usually, uncharged polar groups are classified as hydrophilic <insert wiki showing the hydrophilic> that is found on the outside of proteins. Also, amino acids with the character of acidic or basic side chains are polar, showing on the outside of molecules <insert wiki showing the polar>. For glutamine, its side chain is uncharged and formed by replacing the hydroxyl of glutamic acid with an amine functional group. [http://en.wikipedia.org/wiki/Glutamine] In the other hand, glutamine has no side chain on non-polar group, however the side chain on non-polar groups of the proteins usually tends to be hydrophobic <insert wiki showing the hydrophobic of cysteine> and to cluster together on the inside.[http://www.bmb.uga.edu/wampler/tutorial/prot3.html] |