'''SUPEROXIDE DISMUTASE MUTANT WITH LYS 136 REPLACED BY GLU, CYS 6 REPLACED BY ALA AND CYS 111 REPLACED BY SER (K136E, C6A, C111S)'''
===SUPEROXIDE DISMUTASE MUTANT WITH LYS 136 REPLACED BY GLU, CYS 6 REPLACED BY ALA AND CYS 111 REPLACED BY SER (K136E, C6A, C111S)===
==Overview==
<!--
Key charged residues in Cu,Zn superoxide dismutase (Cu,Zn SOD) promote electrostatic steering of the superoxide substrate to the active site Cu ion, resulting in dismutation of superoxide to oxygen and hydrogen peroxide, Lys-136, along with the adjacent residues Glu-132 and Glu-133, forms a proposed electrostatic triad contributing to substrate recognition. Human Cu,Zn SODs with single-site replacements of Lys-136 by Arg,Ala, Gln, or Glu or with a triple-site substitution (Glu-132 and Glu-133 to Gln and Lys-136 to Ala) were made to test hypotheses regarding contributions of these residues to Cu,Zn SOD activity. The structural effects of these mutations were modeled computationally and validated by the X-ray crystallographic structure determination of Cu,Zn SOD having the Lys-136-to-Glu replacement. Brownian dynamics simulations and multiple-site titration calculations predicted mutant reaction rates as well as ionic strength and pH effects measured by pulse-radiolytic experiments. Lys-136-to-Glu charge reversal decreased dismutation activity 50% from 2.2 x 10(9) to 1.2 x 10(9) M-1 s-1 due to repulsion of negatively charged superoxide, whereas charge-neutralizing substitutions (Lys-136 to Gln or Ala) had a less dramatic influence. In contrast, the triple-mutant Cu,Zn SOD (all three charges in the electrostatic triad neutralized) surprisingly doubled the reaction rate compared with wild-type enzyme but introduced phosphate inhibition. Computational and experimental reaction rates decreased with increasing ionic strength in all of the Lys-136 mutants, with charge reversal having a more pronounced effect than charge neutralization, implying that local electrostatic effects still govern the dismutation rates. Multiple-site titration analysis showed that deprotonation events throughout the enzyme are likely responsible for the gradual decrease in SOD activity above pH 9.5 and predicted a pKa value of 11.7 for Lys-136. Overall, Lys-136 and Glu-132 make comparable contributions to substrate recognition but are less critical to enzyme function than Arg-143, which is both mechanistically and electrostatically essential. Thus, the sequence-conserved residues of this electrostatic triad are evidently important solely for their electrostatic properties, which maintain the high catalytic rate and turnover of Cu,Zn SOD while simultaneously providing specificity by selecting against binding by other anions.
The line below this paragraph, {{ABSTRACT_PUBMED_9294870}}, adds the Publication Abstract to the page
(as it appears on PubMed at http://www.pubmed.gov), where 9294870 is the PubMed ID number.
-->
{{ABSTRACT_PUBMED_9294870}}
==About this Structure==
==About this Structure==
Line 28:
Line 32:
[[Category: Oxidoreductase]]
[[Category: Oxidoreductase]]
[[Category: Superoxide acceptor]]
[[Category: Superoxide acceptor]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 16:47:05 2008''
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Jul 1 03:58:17 2008''
Revision as of 03:58, 1 July 2008
This article has been automatically seeded. Changes to this page should pertain to the PDB entry only and not to the protein or biomolecule in general.
SUPEROXIDE DISMUTASE MUTANT WITH LYS 136 REPLACED BY GLU, CYS 6 REPLACED BY ALA AND CYS 111 REPLACED BY SER (K136E, C6A, C111S)SUPEROXIDE DISMUTASE MUTANT WITH LYS 136 REPLACED BY GLU, CYS 6 REPLACED BY ALA AND CYS 111 REPLACED BY SER (K136E, C6A, C111S)
1FUN is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
ReferenceReference
Computational, pulse-radiolytic, and structural investigations of lysine-136 and its role in the electrostatic triad of human Cu,Zn superoxide dismutase., Fisher CL, Cabelli DE, Hallewell RA, Beroza P, Lo TP, Getzoff ED, Tainer JA, Proteins. 1997 Sep;29(1):103-12. PMID:9294870