9icd: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:9icd.gif|left|200px]] | [[Image:9icd.gif|left|200px]] | ||
<!-- | |||
The line below this paragraph, containing "STRUCTURE_9icd", creates the "Structure Box" on the page. | |||
You may change the PDB parameter (which sets the PDB file loaded into the applet) | |||
or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | |||
or leave the SCENE parameter empty for the default display. | |||
| | --> | ||
| | {{STRUCTURE_9icd| PDB=9icd | SCENE= }} | ||
}} | |||
'''CATALYTIC MECHANISM OF NADP+-DEPENDENT ISOCITRATE DEHYDROGENASE: IMPLICATIONS FROM THE STRUCTURES OF MAGNESIUM-ISOCITRATE AND NADP+ COMPLEXES''' | '''CATALYTIC MECHANISM OF NADP+-DEPENDENT ISOCITRATE DEHYDROGENASE: IMPLICATIONS FROM THE STRUCTURES OF MAGNESIUM-ISOCITRATE AND NADP+ COMPLEXES''' | ||
Line 24: | Line 21: | ||
Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes., Hurley JH, Dean AM, Koshland DE Jr, Stroud RM, Biochemistry. 1991 Sep 3;30(35):8671-8. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/1888729 1888729] | Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes., Hurley JH, Dean AM, Koshland DE Jr, Stroud RM, Biochemistry. 1991 Sep 3;30(35):8671-8. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/1888729 1888729] | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Single protein]] | [[Category: Single protein]] | ||
[[Category: Dean, A M.]] | [[Category: Dean, A M.]] | ||
Line 30: | Line 26: | ||
[[Category: Koshlandjunior, D E.]] | [[Category: Koshlandjunior, D E.]] | ||
[[Category: Stroud, R M.]] | [[Category: Stroud, R M.]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 22:53:16 2008'' | |||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on |
Revision as of 22:53, 4 May 2008
CATALYTIC MECHANISM OF NADP+-DEPENDENT ISOCITRATE DEHYDROGENASE: IMPLICATIONS FROM THE STRUCTURES OF MAGNESIUM-ISOCITRATE AND NADP+ COMPLEXES
OverviewOverview
The structures of NADP+ and magnesium isocitrate bound to the NADP(+)-dependent isocitrate dehydrogenase of Escherichia coli have been determined and refined at 2.5-A resolution. NADP+ is bound by the large domain of isocitrate dehydrogenase, a structure that has little similarity to the supersecondary structure of the nucleotide-binding domain of the lactate dehydrogenase-like family of nucleotide-binding proteins. The coenzyme-binding site confirms the fundamentally different evolution of the isocitrate dehydrogenase-like and the lactate dehydrogenase-like classes of nucleotide-binding proteins. In the magnesium-isocitrate complex, magnesium is coordinated to the alpha-carboxylate and alpha-hydroxyl oxygen of isocitrate in a manner suitable for stabilization of a negative charge on the hydroxyl oxygen during both the dehydrogenation and decarboxylation steps of the conversion of isocitrate to alpha-ketoglutarate. The metal ion is also coordinated by aspartate side chains 283' (of the second subunit of the dimer) and 307 and two water molecules in a roughly octahedral arrangement. On the basis of the geometry of the active site, the base functioning in the dehydrogenation step is most likely aspartate 283'. E. coli isocitrate dehydrogenase transfers a hydride stereospecifically to the A-side of NADP+, and models for a reactive ternary complex consistent with this stereospecificity are discussed.
About this StructureAbout this Structure
9ICD is a Single protein structure of sequence from Escherichia coli. Full crystallographic information is available from OCA.
ReferenceReference
Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes., Hurley JH, Dean AM, Koshland DE Jr, Stroud RM, Biochemistry. 1991 Sep 3;30(35):8671-8. PMID:1888729 Page seeded by OCA on Sun May 4 22:53:16 2008