2eio: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:2eio.jpg|left|200px]] | [[Image:2eio.jpg|left|200px]] | ||
<!-- | |||
The line below this paragraph, containing "STRUCTURE_2eio", creates the "Structure Box" on the page. | |||
You may change the PDB parameter (which sets the PDB file loaded into the applet) | |||
or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | |||
or leave the SCENE parameter empty for the default display. | |||
--> | |||
{{STRUCTURE_2eio| PDB=2eio | SCENE= }} | |||
}} | |||
'''Design of Disulfide-linked Thioredoxin Dimers and Multimers Through Analysis of Crystal Contacts''' | '''Design of Disulfide-linked Thioredoxin Dimers and Multimers Through Analysis of Crystal Contacts''' | ||
Line 26: | Line 23: | ||
[[Category: Single protein]] | [[Category: Single protein]] | ||
[[Category: Kobayashi, M.]] | [[Category: Kobayashi, M.]] | ||
[[Category: | [[Category: Di-sulfide bond]] | ||
[[Category: | [[Category: Electron transport]] | ||
[[Category: | [[Category: Mutant]] | ||
[[Category: | [[Category: Thioredoxin]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 02:36:26 2008'' | |||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on |
Revision as of 02:36, 4 May 2008
Design of Disulfide-linked Thioredoxin Dimers and Multimers Through Analysis of Crystal Contacts
OverviewOverview
Disulfide bonds play an important role in protein stability and function. Here, we describe a general procedure for generating disulfide-linked dimers and multimers of proteins of known crystal structures. An algorithm was developed to predict sites in a protein compatible with intermolecular disulfide formation with neighboring molecules in the crystal lattice. A database analysis was carried out on 46 PDB coordinates to verify the general applicability of this algorithm to predict intermolecular disulfide linkages. On the basis of the predictions from this algorithm, mutants were constructed and characterized for a model protein, thioredoxin. Of the five mutants, as predicted, in solution four formed disulfide-linked dimers while one formed polymers. Thermal and chemical denaturation studies on these mutant thioredoxins showed that three of the four dimeric mutants had similar stability to wild-type thioredoxin while one had lower stability. Three of the mutant dimers crystallized readily (in four to seven days) in contrast to the wild-type protein, which is particularly difficult to crystallize and takes more than a month to form diffraction-quality crystals. In two of the three cases, the structure of the dimer was exactly as predicted by the algorithm, while in the third case the relative orientation of the monomers in the dimer was different from the predicted one. This methodology can be used to enhance protein crystallizability, modulate the oligomerization state and to produce linear chains or ordered three-dimensional protein arrays.
About this StructureAbout this Structure
2EIO is a Single protein structure of sequence from Escherichia coli. Full crystallographic information is available from OCA.
ReferenceReference
Design of disulfide-linked thioredoxin dimers and multimers through analysis of crystal contacts., Das M, Kobayashi M, Yamada Y, Sreeramulu S, Ramakrishnan C, Wakatsuki S, Kato R, Varadarajan R, J Mol Biol. 2007 Oct 5;372(5):1278-92. Epub 2007 Aug 2. PMID:17727880 Page seeded by OCA on Sun May 4 02:36:26 2008