8w3d: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The entry | ==TAS-120 covalent structure with FGFR2 molecular brake mutant== | ||
<StructureSection load='8w3d' size='340' side='right'caption='[[8w3d]], [[Resolution|resolution]] 2.04Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[8w3d]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8W3D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8W3D FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.04Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TZ0:1-[(3~{S})-3-[4-azanyl-3-[2-(3,5-dimethoxyphenyl)ethynyl]pyrazolo[3,4-d]pyrimidin-1-yl]pyrrolidin-1-yl]prop-2-en-1-one'>TZ0</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8w3d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8w3d OCA], [https://pdbe.org/8w3d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8w3d RCSB], [https://www.ebi.ac.uk/pdbsum/8w3d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8w3d ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/FGFR2_HUMAN FGFR2_HUMAN] Defects in FGFR2 are the cause of Crouzon syndrome (CS) [MIM:[https://omim.org/entry/123500 123500]; also called craniofacial dysostosis type I (CFD1). CS is an autosomal dominant syndrome characterized by craniosynostosis (premature fusion of the skull sutures), hypertelorism, exophthalmos and external strabismus, parrot-beaked nose, short upper lip, hypoplastic maxilla, and a relative mandibular prognathism.<ref>PMID:19387476</ref> <ref>PMID:17803937</ref> [:]<ref>PMID:7581378</ref> <ref>PMID:7987400</ref> <ref>PMID:7874170</ref> <ref>PMID:7655462</ref> <ref>PMID:8528214</ref> <ref>PMID:8644708</ref> <ref>PMID:8946174</ref> <ref>PMID:8956050</ref> <ref>PMID:9002682</ref> <ref>PMID:9152842</ref> <ref>PMID:9677057</ref> <ref>PMID:9521581</ref> <ref>PMID:10574673</ref> <ref>PMID:11173845</ref> <ref>PMID:11380921</ref> <ref>PMID:11781872</ref> Defects in FGFR2 are a cause of Jackson-Weiss syndrome (JWS) [MIM:[https://omim.org/entry/123150 123150]. JWS is an autosomal dominant craniosynostosis syndrome characterized by craniofacial abnormalities and abnormality of the feet: broad great toes with medial deviation and tarsal-metatarsal coalescence.<ref>PMID:19387476</ref> <ref>PMID:7874170</ref> <ref>PMID:8528214</ref> <ref>PMID:8644708</ref> <ref>PMID:9677057</ref> <ref>PMID:9385368</ref> Defects in FGFR2 are a cause of Apert syndrome (APRS) [MIM:[https://omim.org/entry/101200 101200]; also known as acrocephalosyndactyly type 1 (ACS1). APRS is a syndrome characterized by facio-cranio-synostosis, osseous and membranous syndactyly of the four extremities, and midface hypoplasia. The craniosynostosis is bicoronal and results in acrocephaly of brachysphenocephalic type. Syndactyly of the fingers and toes may be total (mitten hands and sock feet) or partial affecting the second, third, and fourth digits. Intellectual deficit is frequent and often severe, usually being associated with cerebral malformations.<ref>PMID:15190072</ref> <ref>PMID:19387476</ref> <ref>PMID:9002682</ref> <ref>PMID:9677057</ref> <ref>PMID:11781872</ref> <ref>PMID:7668257</ref> <ref>PMID:11390973</ref> <ref>PMID:7719344</ref> <ref>PMID:9452027</ref> Defects in FGFR2 are a cause of Pfeiffer syndrome (PS) [MIM:[https://omim.org/entry/101600 101600]; also known as acrocephalosyndactyly type V (ACS5). PS is characterized by craniosynostosis (premature fusion of the skull sutures) with deviation and enlargement of the thumbs and great toes, brachymesophalangy, with phalangeal ankylosis and a varying degree of soft tissue syndactyly. Three subtypes of Pfeiffer syndrome have been described: mild autosomal dominant form (type 1); cloverleaf skull, elbow ankylosis, early death, sporadic (type 2); craniosynostosis, early demise, sporadic (type 3).<ref>PMID:16844695</ref> <ref>PMID:19387476</ref> <ref>PMID:17803937</ref> <ref>PMID:8644708</ref> <ref>PMID:9002682</ref> <ref>PMID:11173845</ref> <ref>PMID:11781872</ref> <ref>PMID:7719333</ref> <ref>PMID:7719345</ref> <ref>PMID:9150725</ref> <ref>PMID:9693549</ref> <ref>PMID:9719378</ref> <ref>PMID:10394936</ref> <ref>PMID:10945669</ref> Defects in FGFR2 are the cause of Beare-Stevenson cutis gyrata syndrome (BSCGS) [MIM:[https://omim.org/entry/123790 123790]. BSCGS is an autosomal dominant condition is characterized by the furrowed skin disorder of cutis gyrata, acanthosis nigricans, craniosynostosis, craniofacial dysmorphism, digital anomalies, umbilical and anogenital abnormalities and early death.<ref>PMID:19387476</ref> <ref>PMID:8696350</ref> <ref>PMID:12000365</ref> Defects in FGFR2 are the cause of familial scaphocephaly syndrome (FSPC) [MIM:[https://omim.org/entry/609579 609579]; also known as scaphocephaly with maxillary retrusion and mental retardation. FSPC is an autosomal dominant craniosynostosis syndrome characterized by scaphocephaly, macrocephaly, hypertelorism, maxillary retrusion, and mild intellectual disability. Scaphocephaly is the most common of the craniosynostosis conditions and is characterized by a long, narrow head. It is due to premature fusion of the sagittal suture or from external deformation.<ref>PMID:19387476</ref> <ref>PMID:17803937</ref> <ref>PMID:16061565</ref> Defects in FGFR2 are a cause of lacrimo-auriculo-dento-digital syndrome (LADDS) [MIM:[https://omim.org/entry/149730 149730]; also known as Levy-Hollister syndrome. LADDS is a form of ectodermal dysplasia, a heterogeneous group of disorders due to abnormal development of two or more ectodermal structures. LADDS is an autosomal dominant syndrome characterized by aplastic/hypoplastic lacrimal and salivary glands and ducts, cup-shaped ears, hearing loss, hypodontia and enamel hypoplasia, and distal limb segments anomalies. In addition to these cardinal features, facial dysmorphism, malformations of the kidney and respiratory system and abnormal genitalia have been reported. Craniosynostosis and severe syndactyly are not observed.<ref>PMID:19387476</ref> <ref>PMID:18056630</ref> <ref>PMID:16501574</ref> Defects in FGFR2 are the cause of Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis (ABS2) [MIM:[https://omim.org/entry/207410 207410]. A rare syndrome characterized by craniosynostosis, radiohumeral synostosis present from the perinatal period, midface hypoplasia, choanal stenosis or atresia, femoral bowing and multiple joint contractures. Arachnodactyly and/or camptodactyly have also been reported.<ref>PMID:19387476</ref> <ref>PMID:10633130</ref> Defects in FGFR2 are the cause of Bent bone dysplasia syndrome (BBDS) [MIM:[https://omim.org/entry/614592 614592]. BBDS is a perinatal lethal skeletal dysplasia characterized by poor mineralization of the calvarium, craniosynostosis, dysmorphic facial features, prenatal teeth, hypoplastic pubis and clavicles, osteopenia, and bent long bones. Dysmorphic facial features included low-set ears, hypertelorism, midface hypoplasia, prematurely erupted fetal teeth, and micrognathia.<ref>PMID:19387476</ref> <ref>PMID:22387015</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/FGFR2_HUMAN FGFR2_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation, migration and apoptosis, and in the regulation of embryonic development. Required for normal embryonic patterning, trophoblast function, limb bud development, lung morphogenesis, osteogenesis and skin development. Plays an essential role in the regulation of osteoblast differentiation, proliferation and apoptosis, and is required for normal skeleton development. Promotes cell proliferation in keratinocytes and immature osteoblasts, but promotes apoptosis in differentiated osteoblasts. Phosphorylates PLCG1, FRS2 and PAK4. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. FGFR2 signaling is down-regulated by ubiquitination, internalization and degradation. Mutations that lead to constitutive kinase activation or impair normal FGFR2 maturation, internalization and degradation lead to aberrant signaling. Over-expressed FGFR2 promotes activation of STAT1.<ref>PMID:8961926</ref> <ref>PMID:8663044</ref> <ref>PMID:12529371</ref> <ref>PMID:15190072</ref> <ref>PMID:15629145</ref> <ref>PMID:16597617</ref> <ref>PMID:16844695</ref> <ref>PMID:17623664</ref> <ref>PMID:17311277</ref> <ref>PMID:18374639</ref> <ref>PMID:19410646</ref> <ref>PMID:19103595</ref> <ref>PMID:21596750</ref> <ref>PMID:19387476</ref> <ref>PMID:16384934</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
BACKGROUND: Fibroblast growth factor receptor (FGFR) inhibitors have significantly improved outcomes for patients with FGFR-altered cholangiocarcinoma, leading to their regulatory approval in multiple countries. However, as with many targeted therapies, acquired resistance limits their efficacy. A comprehensive, multimodal approach is crucial to characterizing resistance patterns to FGFR inhibitors. PATIENTS AND METHODS: This study integrated data from six investigative strategies: cell-free DNA, tissue biopsy, rapid autopsy, statistical genomics, in vitro and in vivo studies, and pharmacology. We characterized the diversity, clonality, frequency, and mechanisms of acquired resistance to FGFR inhibitors in patients with FGFR-altered cholangiocarcinoma. Clinical samples were analyzed longitudinally as part of routine care across 10 institutions. RESULTS: Among 138 patients evaluated, 77 met eligibility, yielding a total of 486 clinical samples. Patients with clinical benefit exhibited a significantly higher rate of FGFR2 kinase domain mutations compared to those without clinical benefit (65% vs 10%, p<0.0001). We identified 26 distinct FGFR2 kinase domain mutations, with 63% of patients harboring multiple. While IC50 assessments indicated strong potency of pan-FGFR inhibitors against common resistance mutations, pharmacokinetic studies revealed that low clinically achievable drug concentrations may underly polyclonal resistance. Molecular brake and gatekeeper mutations predominated, with 94% of patients with FGFR2 mutations exhibiting one or both, whereas mutations at the cysteine residue targeted by covalent inhibitors were rare. Statistical genomics and functional studies demonstrated that mutation frequencies were driven by their combined effects on drug binding and kinase activity rather than intrinsic mutational processes. CONCLUSION: Our multimodal analysis led to a model characterizing the biology of acquired resistance, informing the rational design of next-generation FGFR inhibitors. FGFR inhibitors should be small, high-affinity, and selective for specific FGFR family members. Tinengotinib, a novel small molecule inhibitor with these characteristics, exhibited preclinical and clinical activity against key resistance mutations. This integrated approach offers a blueprint for advancing drug resistance research across cancer types. | |||
A Model for Decoding Resistance in Precision Oncology: Acquired Resistance to FGFR inhibitors in Cholangiocarcinoma.,Goyal L, DiToro D, Facchinetti F, Martin EE, Peng P, Baiev I, Iyer R, Maurer J, Reyes S, Zhang K, Majeed U, Berchuck JE, Chen CT, Walmsley C, Pinto C, Vasseur D, Gordan JD, Mody K, Borad M, Karasic T, Damjanov N, Danysh BP, Wehrenberg-Klee E, Kambadakone AR, Saha SK, Hoffman ID, Nelson KJ, Iyer S, Qiang X, Sun C, Wang H, Li L, Javle M, Lin B, Harris W, Zhu AX, Cleary JM, Flaherty KT, Harris T, Shroff RT, Leshchiner I, Parida L, Kelley RK, Fan J, Stone JR, Uboha NV, Hirai H, Sootome H, Wu F, Bensen DC, Hollebecque A, Friboulet L, Lennerz JK, Getz G, Juric D Ann Oncol. 2024 Dec 18:S0923-7534(24)04990-1. doi: 10.1016/j.annonc.2024.12.011. PMID:39706336<ref>PMID:39706336</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 8w3d" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Bailey JB]] | |||
[[Category: Bensen DC]] | |||
[[Category: Hoffman ID]] | |||
[[Category: Nelson KJ]] |
Latest revision as of 16:58, 1 January 2025
TAS-120 covalent structure with FGFR2 molecular brake mutantTAS-120 covalent structure with FGFR2 molecular brake mutant
Structural highlights
DiseaseFGFR2_HUMAN Defects in FGFR2 are the cause of Crouzon syndrome (CS) [MIM:123500; also called craniofacial dysostosis type I (CFD1). CS is an autosomal dominant syndrome characterized by craniosynostosis (premature fusion of the skull sutures), hypertelorism, exophthalmos and external strabismus, parrot-beaked nose, short upper lip, hypoplastic maxilla, and a relative mandibular prognathism.[1] [2] [:][3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] Defects in FGFR2 are a cause of Jackson-Weiss syndrome (JWS) [MIM:123150. JWS is an autosomal dominant craniosynostosis syndrome characterized by craniofacial abnormalities and abnormality of the feet: broad great toes with medial deviation and tarsal-metatarsal coalescence.[19] [20] [21] [22] [23] [24] Defects in FGFR2 are a cause of Apert syndrome (APRS) [MIM:101200; also known as acrocephalosyndactyly type 1 (ACS1). APRS is a syndrome characterized by facio-cranio-synostosis, osseous and membranous syndactyly of the four extremities, and midface hypoplasia. The craniosynostosis is bicoronal and results in acrocephaly of brachysphenocephalic type. Syndactyly of the fingers and toes may be total (mitten hands and sock feet) or partial affecting the second, third, and fourth digits. Intellectual deficit is frequent and often severe, usually being associated with cerebral malformations.[25] [26] [27] [28] [29] [30] [31] [32] [33] Defects in FGFR2 are a cause of Pfeiffer syndrome (PS) [MIM:101600; also known as acrocephalosyndactyly type V (ACS5). PS is characterized by craniosynostosis (premature fusion of the skull sutures) with deviation and enlargement of the thumbs and great toes, brachymesophalangy, with phalangeal ankylosis and a varying degree of soft tissue syndactyly. Three subtypes of Pfeiffer syndrome have been described: mild autosomal dominant form (type 1); cloverleaf skull, elbow ankylosis, early death, sporadic (type 2); craniosynostosis, early demise, sporadic (type 3).[34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] Defects in FGFR2 are the cause of Beare-Stevenson cutis gyrata syndrome (BSCGS) [MIM:123790. BSCGS is an autosomal dominant condition is characterized by the furrowed skin disorder of cutis gyrata, acanthosis nigricans, craniosynostosis, craniofacial dysmorphism, digital anomalies, umbilical and anogenital abnormalities and early death.[48] [49] [50] Defects in FGFR2 are the cause of familial scaphocephaly syndrome (FSPC) [MIM:609579; also known as scaphocephaly with maxillary retrusion and mental retardation. FSPC is an autosomal dominant craniosynostosis syndrome characterized by scaphocephaly, macrocephaly, hypertelorism, maxillary retrusion, and mild intellectual disability. Scaphocephaly is the most common of the craniosynostosis conditions and is characterized by a long, narrow head. It is due to premature fusion of the sagittal suture or from external deformation.[51] [52] [53] Defects in FGFR2 are a cause of lacrimo-auriculo-dento-digital syndrome (LADDS) [MIM:149730; also known as Levy-Hollister syndrome. LADDS is a form of ectodermal dysplasia, a heterogeneous group of disorders due to abnormal development of two or more ectodermal structures. LADDS is an autosomal dominant syndrome characterized by aplastic/hypoplastic lacrimal and salivary glands and ducts, cup-shaped ears, hearing loss, hypodontia and enamel hypoplasia, and distal limb segments anomalies. In addition to these cardinal features, facial dysmorphism, malformations of the kidney and respiratory system and abnormal genitalia have been reported. Craniosynostosis and severe syndactyly are not observed.[54] [55] [56] Defects in FGFR2 are the cause of Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis (ABS2) [MIM:207410. A rare syndrome characterized by craniosynostosis, radiohumeral synostosis present from the perinatal period, midface hypoplasia, choanal stenosis or atresia, femoral bowing and multiple joint contractures. Arachnodactyly and/or camptodactyly have also been reported.[57] [58] Defects in FGFR2 are the cause of Bent bone dysplasia syndrome (BBDS) [MIM:614592. BBDS is a perinatal lethal skeletal dysplasia characterized by poor mineralization of the calvarium, craniosynostosis, dysmorphic facial features, prenatal teeth, hypoplastic pubis and clavicles, osteopenia, and bent long bones. Dysmorphic facial features included low-set ears, hypertelorism, midface hypoplasia, prematurely erupted fetal teeth, and micrognathia.[59] [60] FunctionFGFR2_HUMAN Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation, migration and apoptosis, and in the regulation of embryonic development. Required for normal embryonic patterning, trophoblast function, limb bud development, lung morphogenesis, osteogenesis and skin development. Plays an essential role in the regulation of osteoblast differentiation, proliferation and apoptosis, and is required for normal skeleton development. Promotes cell proliferation in keratinocytes and immature osteoblasts, but promotes apoptosis in differentiated osteoblasts. Phosphorylates PLCG1, FRS2 and PAK4. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. FGFR2 signaling is down-regulated by ubiquitination, internalization and degradation. Mutations that lead to constitutive kinase activation or impair normal FGFR2 maturation, internalization and degradation lead to aberrant signaling. Over-expressed FGFR2 promotes activation of STAT1.[61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] Publication Abstract from PubMedBACKGROUND: Fibroblast growth factor receptor (FGFR) inhibitors have significantly improved outcomes for patients with FGFR-altered cholangiocarcinoma, leading to their regulatory approval in multiple countries. However, as with many targeted therapies, acquired resistance limits their efficacy. A comprehensive, multimodal approach is crucial to characterizing resistance patterns to FGFR inhibitors. PATIENTS AND METHODS: This study integrated data from six investigative strategies: cell-free DNA, tissue biopsy, rapid autopsy, statistical genomics, in vitro and in vivo studies, and pharmacology. We characterized the diversity, clonality, frequency, and mechanisms of acquired resistance to FGFR inhibitors in patients with FGFR-altered cholangiocarcinoma. Clinical samples were analyzed longitudinally as part of routine care across 10 institutions. RESULTS: Among 138 patients evaluated, 77 met eligibility, yielding a total of 486 clinical samples. Patients with clinical benefit exhibited a significantly higher rate of FGFR2 kinase domain mutations compared to those without clinical benefit (65% vs 10%, p<0.0001). We identified 26 distinct FGFR2 kinase domain mutations, with 63% of patients harboring multiple. While IC50 assessments indicated strong potency of pan-FGFR inhibitors against common resistance mutations, pharmacokinetic studies revealed that low clinically achievable drug concentrations may underly polyclonal resistance. Molecular brake and gatekeeper mutations predominated, with 94% of patients with FGFR2 mutations exhibiting one or both, whereas mutations at the cysteine residue targeted by covalent inhibitors were rare. Statistical genomics and functional studies demonstrated that mutation frequencies were driven by their combined effects on drug binding and kinase activity rather than intrinsic mutational processes. CONCLUSION: Our multimodal analysis led to a model characterizing the biology of acquired resistance, informing the rational design of next-generation FGFR inhibitors. FGFR inhibitors should be small, high-affinity, and selective for specific FGFR family members. Tinengotinib, a novel small molecule inhibitor with these characteristics, exhibited preclinical and clinical activity against key resistance mutations. This integrated approach offers a blueprint for advancing drug resistance research across cancer types. A Model for Decoding Resistance in Precision Oncology: Acquired Resistance to FGFR inhibitors in Cholangiocarcinoma.,Goyal L, DiToro D, Facchinetti F, Martin EE, Peng P, Baiev I, Iyer R, Maurer J, Reyes S, Zhang K, Majeed U, Berchuck JE, Chen CT, Walmsley C, Pinto C, Vasseur D, Gordan JD, Mody K, Borad M, Karasic T, Damjanov N, Danysh BP, Wehrenberg-Klee E, Kambadakone AR, Saha SK, Hoffman ID, Nelson KJ, Iyer S, Qiang X, Sun C, Wang H, Li L, Javle M, Lin B, Harris W, Zhu AX, Cleary JM, Flaherty KT, Harris T, Shroff RT, Leshchiner I, Parida L, Kelley RK, Fan J, Stone JR, Uboha NV, Hirai H, Sootome H, Wu F, Bensen DC, Hollebecque A, Friboulet L, Lennerz JK, Getz G, Juric D Ann Oncol. 2024 Dec 18:S0923-7534(24)04990-1. doi: 10.1016/j.annonc.2024.12.011. PMID:39706336[76] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|