8eyb: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8eyb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8eyb OCA], [https://pdbe.org/8eyb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8eyb RCSB], [https://www.ebi.ac.uk/pdbsum/8eyb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8eyb ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8eyb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8eyb OCA], [https://pdbe.org/8eyb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8eyb RCSB], [https://www.ebi.ac.uk/pdbsum/8eyb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8eyb ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/JAK2_HUMAN JAK2_HUMAN] Note=Chromosomal aberrations involving JAK2 are found in both chronic and acute forms of eosinophilic, lymphoblastic and myeloid leukemia. Translocation t(8;9)(p22;p24) with PCM1 links the protein kinase domain of JAK2 to the major portion of PCM1. Translocation t(9;12)(p24;p13) with ETV6.  Defects in JAK2 are a cause of susceptibility to Budd-Chiari syndrome (BDCHS) [MIM:[https://omim.org/entry/600880 600880]. A syndrome caused by obstruction of hepatic venous outflow involving either the hepatic veins or the terminal segment of the inferior vena cava. Obstructions are generally caused by thrombosis and lead to hepatic congestion and ischemic necrosis. Clinical manifestations observed in the majority of patients include hepatomegaly, right upper quadrant pain and abdominal ascites. Budd-Chiari syndrome is associated with a combination of disease states including primary myeloproliferative syndromes and thrombophilia due to factor V Leiden, protein C deficiency and antithrombin III deficiency. Budd-Chiari syndrome is a rare but typical complication in patients with polycythemia vera.  Defects in JAK2 are a cause of polycythemia vera (PV) [MIM:[https://omim.org/entry/263300 263300]. A myeloproliferative disorder characterized by abnormal proliferation of all hematopoietic bone marrow elements, erythroid hyperplasia, an absolute increase in total blood volume, but also by myeloid leukocytosis, thrombocytosis and splenomegaly.<ref>PMID:15781101</ref> <ref>PMID:15793561</ref> <ref>PMID:15858187</ref> <ref>PMID:16603627</ref>  Defects in JAK2 gene may be the cause of thrombocythemia type 3 (THCYT3) [MIM:[https://omim.org/entry/614521 614521]. A myeloproliferative disorder characterized by elevated platelet levels due to sustained proliferation of megakaryocytes, and frequently lead to thrombotic and haemorrhagic complications.<ref>PMID:16325696</ref> <ref>PMID:22397670</ref>  Defects in JAK2 are a cause of myelofibrosis (MYELOF) [MIM:[https://omim.org/entry/254450 254450]. Myelofibrosis is a disorder characterized by replacement of the bone marrow by fibrous tissue, occurring in association with a myeloproliferative disorder. Clinical manifestations may include anemia, pallor, splenomegaly, hypermetabolic state, petechiae, ecchymosis, bleeding, lymphadenopathy, hepatomegaly, portal hypertension.  Defects in JAK2 are a cause of acute myelogenous leukemia (AML) [MIM:[https://omim.org/entry/601626 601626]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.<ref>PMID:16247455</ref>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/JAK2_HUMAN JAK2_HUMAN] Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin (THPO); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins. Following ligand-binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins. Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, cell stimulation with erythropoietin (EPO) during erythropoiesis leads to JAK2 autophosphorylation, activation, and its association with erythropoietin receptor (EPOR) that becomes phosphorylated in its cytoplasmic domain. Then, STAT5 (STAT5A or STAT5B) is recruited, phosphorylated and activated by JAK2. Once activated, dimerized STAT5 translocates into the nucleus and promotes the transcription of several essential genes involved in the modulation of erythropoiesis. In addition, JAK2 mediates angiotensin-2-induced ARHGEF1 phosphorylation. Plays a role in cell cycle by phosphorylating CDKN1B. Cooperates with TEC through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. In the nucleus, plays a key role in chromatin by specifically mediating phosphorylation of 'Tyr-41' of histone H3 (H3Y41ph), a specific tag that promotes exclusion of CBX5 (HP1 alpha) from chromatin.<ref>PMID:12023369</ref> <ref>PMID:19783980</ref> <ref>PMID:20098430</ref> <ref>PMID:21423214</ref>  
[https://www.uniprot.org/uniprot/PTN1_HUMAN PTN1_HUMAN] Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion.<ref>PMID:21135139</ref> <ref>PMID:22169477</ref>  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 21: Line 19:
</div>
</div>
<div class="pdbe-citations 8eyb" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 8eyb" style="background-color:#fffaf0;"></div>
==See Also==
*[[Tyrosine phosphatase 3D structures|Tyrosine phosphatase 3D structures]]
== References ==
== References ==
<references/>
<references/>

Latest revision as of 15:06, 23 October 2024

Crystal structure of PTP1B D181A/Q262A/C215A phosphatase domain with JAK2 activation loop phosphopeptideCrystal structure of PTP1B D181A/Q262A/C215A phosphatase domain with JAK2 activation loop phosphopeptide

Structural highlights

8eyb is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.349Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PTN1_HUMAN Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion.[1] [2]

Publication Abstract from PubMed

Protein Tyrosine Phosphatase 1B (PTP1B) is the prototypical protein tyrosine phosphatase and plays an essential role in the regulation of several kinase-driven signalling pathways. PTP1B displays a preference for bisphosphorylated substrates. Here we identify PTP1B as an inhibitor of IL-6 and show that, in vitro, it can dephosphorylate all four members of the JAK family. In order to gain a detailed understanding of the molecular mechanism of JAK dephosphorylation, we undertook a structural and biochemical analysis of the dephosphorylation reaction. We identified a product-trapping PTP1B mutant that allowed visualisation of the tyrosine and phosphate products of the reaction and a substrate-trapping mutant with a vastly decreased off-rate compared to those previously described. The latter mutant was used to determine the structure of bisphosphorylated JAK peptides bound to the enzyme active site. These structures revealed that the downstream phosphotyrosine preferentially engaged the active site, in contrast to the analogous region of IRK. Biochemical analysis confirmed this preference. In this binding mode, the previously identified second aryl binding site remains unoccupied and the non-substrate phosphotyrosine engages Arg47. Mutation of this arginine disrupts the preference for the downstream phosphotyrosine. This study reveals a previously unappreciated plasticity in how PTP1B interacts with different substrates.

Structure guided studies of the interaction between PTP1B and JAK.,Morris R, Keating N, Tan C, Chen H, Laktyushin A, Saiyed T, Liau NPD, Nicola NA, Tiganis T, Kershaw NJ, Babon JJ Commun Biol. 2023 Jun 14;6(1):641. doi: 10.1038/s42003-023-05020-9. PMID:37316570[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M. PTP1B regulates Eph receptor function and trafficking. J Cell Biol. 2010 Dec 13;191(6):1189-203. doi: 10.1083/jcb.201005035. Epub 2010, Dec 6. PMID:21135139 doi:10.1083/jcb.201005035
  2. Krishnan N, Fu C, Pappin DJ, Tonks NK. H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal. 2011 Dec 13;4(203):ra86. doi: 10.1126/scisignal.2002329. PMID:22169477 doi:10.1126/scisignal.2002329
  3. Morris R, Keating N, Tan C, Chen H, Laktyushin A, Saiyed T, Liau NPD, Nicola NA, Tiganis T, Kershaw NJ, Babon JJ. Structure guided studies of the interaction between PTP1B and JAK. Commun Biol. 2023 Jun 14;6(1):641. PMID:37316570 doi:10.1038/s42003-023-05020-9

8eyb, resolution 2.35Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA