8e2m: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 5: Line 5:
<table><tr><td colspan='2'>[[8e2m]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8E2M OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8E2M FirstGlance]. <br>
<table><tr><td colspan='2'>[[8e2m]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8E2M OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8E2M FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.904&#8491;</td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.904&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene>, <scene name='pdbligand=UB6:(5P)-5-[4-methyl-6-(2-methylpropyl)pyridin-3-yl]-4-oxo-N-[(1R,2S)-2-propanamidocyclopentyl]-4,5-dihydro-3H-1-thia-3,5,8-triazaacenaphthylene-2-carboxamide'>UB6</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene>, <scene name='pdbligand=UB6:7-[4-methyl-6-(2-methylpropyl)pyridin-3-yl]-6-oxidanylidene-~{N}-[(1~{R},2~{S})-2-(propanoylamino)cyclopentyl]-2-thia-5,7,11-triazatricyclo[6.3.1.0^{4,12}]dodeca-1(12),3,8,10-tetraene-3-carboxamide'>UB6</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8e2m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8e2m OCA], [https://pdbe.org/8e2m PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8e2m RCSB], [https://www.ebi.ac.uk/pdbsum/8e2m PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8e2m ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8e2m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8e2m OCA], [https://pdbe.org/8e2m PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8e2m RCSB], [https://www.ebi.ac.uk/pdbsum/8e2m PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8e2m ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
<div style="background-color:#fffaf0;">
[https://www.uniprot.org/uniprot/BTK_HUMAN BTK_HUMAN] Defects in BTK are the cause of X-linked agammaglobulinemia (XLA) [MIM:[https://omim.org/entry/300755 300755]; also known as X-linked agammaglobulinemia type 1 (AGMX1) or immunodeficiency type 1 (IMD1). XLA is a humoral immunodeficiency disease which results in developmental defects in the maturation pathway of B-cells. Affected boys have normal levels of pre-B-cells in their bone marrow but virtually no circulating mature B-lymphocytes. This results in a lack of immunoglobulins of all classes and leads to recurrent bacterial infections like otitis, conjunctivitis, dermatitis, sinusitis in the first few years of life, or even some patients present overwhelming sepsis or meningitis, resulting in death in a few hours. Treatment in most cases is by infusion of intravenous immunoglobulin.<ref>PMID:7880320</ref> <ref>PMID:8013627</ref> <ref>PMID:8162056</ref> <ref>PMID:8162018</ref> <ref>PMID:7849697</ref> <ref>PMID:7849721</ref> <ref>PMID:7809124</ref> <ref>PMID:7849006</ref> <ref>PMID:7711734</ref> <ref>PMID:7633420</ref> <ref>PMID:7633429</ref> <ref>PMID:8634718</ref> <ref>PMID:7627183</ref> <ref>PMID:7897635</ref> <ref>PMID:8723128</ref> <ref>PMID:8695804</ref> <ref>PMID:8834236</ref> <ref>PMID:9280283</ref> <ref>PMID:9260159</ref> <ref>PMID:9545398</ref> <ref>PMID:9445504</ref> <ref>PMID:10220140</ref> <ref>PMID:10678660</ref> <ref>PMID:10612838</ref>  Defects in BTK may be the cause of X-linked hypogammaglobulinemia and isolated growth hormone deficiency (XLA-IGHD) [MIM:[https://omim.org/entry/307200 307200]; also known as agammaglobulinemia and isolated growth hormone deficiency or Fleisher syndrome or isolated growth hormone deficiency type 3 (IGHD3). In rare cases XLA is inherited together with isolated growth hormone deficiency (IGHD).
== Publication Abstract from PubMed ==
== Function ==
Bruton's tyrosine kinase (BTK) is a Tec family kinase that plays an essential role in B-cell receptor (BCR) signaling as well as Fcgamma receptor signaling in leukocytes. Pharmacological inhibition of BTK has been shown to be effective in treating hematological malignancies and is hypothesized to provide an effective strategy for the treatment of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. We report the discovery and preclinical properties of JNJ-64264681 (13), a covalent, irreversible BTK inhibitor with potent whole blood activity and exceptional kinome selectivity. JNJ-64264681 demonstrated excellent oral efficacy in both cancer and autoimmune models with sustained in vivo target coverage amenable to once daily dosing and has advanced into human clinical studies to investigate safety and pharmacokinetics.
[https://www.uniprot.org/uniprot/BTK_HUMAN BTK_HUMAN] Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.<ref>PMID:9012831</ref> <ref>PMID:11606584</ref> <ref>PMID:16517732</ref> <ref>PMID:16738337</ref> <ref>PMID:16415872</ref> <ref>PMID:17932028</ref>  
 
Discovery of JNJ-64264681: A Potent and Selective Covalent Inhibitor of Bruton's Tyrosine Kinase.,Tichenor MS, Wiener JJM, Rao NL, Bacani GM, Wei J, Pooley Deckhut C, Barbay JK, Kreutter KD, Chang L, Clancy KW, Murrey HE, Wang W, Ahn K, Huber M, Rex E, Coe KJ, Wu J, Rui H, Sepassi K, Gaudiano M, Bekkers M, Cornelissen I, Packman K, Seierstad M, Xiouras C, Bembenek SD, Alexander R, Milligan C, Balasubramanian S, Lebsack AD, Venable JD, Philippar U, Edwards JP, Hirst G J Med Chem. 2022 Nov 10;65(21):14326-14336. doi: 10.1021/acs.jmedchem.2c01026. , Epub 2022 Oct 31. PMID:36314537<ref>PMID:36314537</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 8e2m" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Latest revision as of 12:34, 17 October 2024

Bruton's tyrosine kinase (BTK) with compound 13Bruton's tyrosine kinase (BTK) with compound 13

Structural highlights

8e2m is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.904Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Bruton's tyrosine kinase (BTK) is a Tec family kinase that plays an essential role in B-cell receptor (BCR) signaling as well as Fcgamma receptor signaling in leukocytes. Pharmacological inhibition of BTK has been shown to be effective in treating hematological malignancies and is hypothesized to provide an effective strategy for the treatment of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. We report the discovery and preclinical properties of JNJ-64264681 (13), a covalent, irreversible BTK inhibitor with potent whole blood activity and exceptional kinome selectivity. JNJ-64264681 demonstrated excellent oral efficacy in both cancer and autoimmune models with sustained in vivo target coverage amenable to once daily dosing and has advanced into human clinical studies to investigate safety and pharmacokinetics.

Discovery of JNJ-64264681: A Potent and Selective Covalent Inhibitor of Bruton's Tyrosine Kinase.,Tichenor MS, Wiener JJM, Rao NL, Bacani GM, Wei J, Pooley Deckhut C, Barbay JK, Kreutter KD, Chang L, Clancy KW, Murrey HE, Wang W, Ahn K, Huber M, Rex E, Coe KJ, Wu J, Rui H, Sepassi K, Gaudiano M, Bekkers M, Cornelissen I, Packman K, Seierstad M, Xiouras C, Bembenek SD, Alexander R, Milligan C, Balasubramanian S, Lebsack AD, Venable JD, Philippar U, Edwards JP, Hirst G J Med Chem. 2022 Nov 10;65(21):14326-14336. doi: 10.1021/acs.jmedchem.2c01026. , Epub 2022 Oct 31. PMID:36314537[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tichenor MS, Wiener JJM, Rao NL, Bacani GM, Wei J, Pooley Deckhut C, Barbay JK, Kreutter KD, Chang L, Clancy KW, Murrey HE, Wang W, Ahn K, Huber M, Rex E, Coe KJ, Wu J, Rui H, Sepassi K, Gaudiano M, Bekkers M, Cornelissen I, Packman K, Seierstad M, Xiouras C, Bembenek SD, Alexander R, Milligan C, Balasubramanian S, Lebsack AD, Venable JD, Philippar U, Edwards JP, Hirst G. Discovery of JNJ-64264681: A Potent and Selective Covalent Inhibitor of Bruton's Tyrosine Kinase. J Med Chem. 2022 Nov 10;65(21):14326-14336. doi: 10.1021/acs.jmedchem.2c01026., Epub 2022 Oct 31. PMID:36314537 doi:http://dx.doi.org/10.1021/acs.jmedchem.2c01026

8e2m, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA