7uph: Difference between revisions

No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='7uph' size='340' side='right'caption='[[7uph]], [[Resolution|resolution]] 4.18&Aring;' scene=''>
<StructureSection load='7uph' size='340' side='right'caption='[[7uph]], [[Resolution|resolution]] 4.18&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7uph]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] and [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UPH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UPH FirstGlance]. <br>
<table><tr><td colspan='2'>[[7uph]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UPH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UPH FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MG:1N-METHYLGUANOSINE-5-MONOPHOSPHATE'>1MG</scene>, <scene name='pdbligand=2MA:2-METHYLADENOSINE-5-MONOPHOSPHATE'>2MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=3TD:(1S)-1,4-ANHYDRO-1-(3-METHYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDIN-5-YL)-5-O-PHOSPHONO-D-RIBITOL'>3TD</scene>, <scene name='pdbligand=4D4:(2S,3R)-2-AZANYL-5-CARBAMIMIDAMIDO-3-OXIDANYL-PENTANOIC+ACID'>4D4</scene>, <scene name='pdbligand=4OC:4N,O2-METHYLCYTIDINE-5-MONOPHOSPHATE'>4OC</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=6MZ:N6-METHYLADENOSINE-5-MONOPHOSPHATE'>6MZ</scene>, <scene name='pdbligand=D2T:(3R)-3-(METHYLSULFANYL)-L-ASPARTIC+ACID'>D2T</scene>, <scene name='pdbligand=G7M:N7-METHYL-GUANOSINE-5-MONOPHOSPHATE'>G7M</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.18&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MG:1N-METHYLGUANOSINE-5-MONOPHOSPHATE'>1MG</scene>, <scene name='pdbligand=2MA:2-METHYLADENOSINE-5-MONOPHOSPHATE'>2MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=3TD:(1S)-1,4-ANHYDRO-1-(3-METHYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDIN-5-YL)-5-O-PHOSPHONO-D-RIBITOL'>3TD</scene>, <scene name='pdbligand=4D4:(2S,3R)-2-AZANYL-5-CARBAMIMIDAMIDO-3-OXIDANYL-PENTANOIC+ACID'>4D4</scene>, <scene name='pdbligand=4OC:4N,O2-METHYLCYTIDINE-5-MONOPHOSPHATE'>4OC</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=6MZ:N6-METHYLADENOSINE-5-MONOPHOSPHATE'>6MZ</scene>, <scene name='pdbligand=D2T:(3R)-3-(METHYLSULFANYL)-L-ASPARTIC+ACID'>D2T</scene>, <scene name='pdbligand=G7M:N7-METHYL-GUANOSINE-5-MONOPHOSPHATE'>G7M</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7uph FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7uph OCA], [https://pdbe.org/7uph PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7uph RCSB], [https://www.ebi.ac.uk/pdbsum/7uph PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7uph ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7uph FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7uph OCA], [https://pdbe.org/7uph PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7uph RCSB], [https://www.ebi.ac.uk/pdbsum/7uph PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7uph ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/C3SYP2_ECOLX C3SYP2_ECOLX]]  
[https://www.uniprot.org/uniprot/RL3_ECOLI RL3_ECOLI] One of two assembly inititator proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.[HAMAP-Rule:MF_01325_B]
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
RNA-based macromolecular machines, such as the ribosome, have functional parts reliant on structural interactions spanning sequence-distant regions. These features limit evolutionary exploration of mutant libraries and confound three-dimensional structure-guided design. To address these challenges, we describe Evolink (evolution and linkage), a method that enables high-throughput evolution of sequence-distant regions in large macromolecular machines, and library design guided by computational RNA modeling to enable exploration of structurally stable designs. Using Evolink, we evolved a tethered ribosome with a 58% increased activity in orthogonal protein translation and a 97% improvement in doubling times in SQ171 cells compared to a previously developed tethered ribosome, and reveal new permissible sequences in a pair of ribosomal helices with previously explored biological function. The Evolink approach may enable enhanced engineering of macromolecular machines for new and improved functions for synthetic biology.
RNA-based macromolecular machines, such as the ribosome, have functional parts reliant on structural interactions spanning sequence-distant regions. These features limit evolutionary exploration of mutant libraries and confound three-dimensional structure-guided design. To address these challenges, we describe Evolink (evolution and linkage), a method that enables high-throughput evolution of sequence-distant regions in large macromolecular machines, and library design guided by computational RNA modeling to enable exploration of structurally stable designs. Using Evolink, we evolved a tethered ribosome with a 58% increased activity in orthogonal protein translation and a 97% improvement in doubling times in SQ171 cells compared to a previously developed tethered ribosome, and reveal new permissible sequences in a pair of ribosomal helices with previously explored biological function. The Evolink approach may enable enhanced engineering of macromolecular machines for new and improved functions for synthetic biology.


Three-dimensional structure-guided evolution of a ribosome with tethered subunits.,Kim DS, Watkins A, Bidstrup E, Lee J, Topkar V, Kofman C, Schwarz KJ, Liu Y, Pintilie G, Roney E, Das R, Jewett MC Nat Chem Biol. 2022 Sep;18(9):990-998. doi: 10.1038/s41589-022-01064-w. Epub 2022, Jul 14. PMID:35836020<ref>PMID:35836020</ref>
Three-dimensional structure-guided evolution of a ribosome with tethered subunits.,Kim DS, Watkins A, Bidstrup E, Lee J, Topkar V, Kofman C, Schwarz KJ, Liu Y, Pintilie G, Roney E, Das R, Jewett MC Nat Chem Biol. 2022 Sep;18(9):990-998. doi: 10.1038/s41589-022-01064-w. Epub 2022 , Jul 14. PMID:35836020<ref>PMID:35836020</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 7uph" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 7uph" style="background-color:#fffaf0;"></div>
==See Also==
*[[Ribosome 3D structures|Ribosome 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 23: Line 27:
</StructureSection>
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Escherichia coli K-12]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Bidstrup E]]
[[Category: Bidstrup E]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA