7sp1: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==== | ==RNA-induced tau amyloid fibril== | ||
<StructureSection load='7sp1' size='340' side='right'caption='[[7sp1]]' scene=''> | <StructureSection load='7sp1' size='340' side='right'caption='[[7sp1]], [[Resolution|resolution]] 3.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br> | <table><tr><td colspan='2'>[[7sp1]] is a 17 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus Mus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7SP1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7SP1 FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7sp1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7sp1 OCA], [https://pdbe.org/7sp1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7sp1 RCSB], [https://www.ebi.ac.uk/pdbsum/7sp1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7sp1 ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.4Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7sp1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7sp1 OCA], [https://pdbe.org/7sp1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7sp1 RCSB], [https://www.ebi.ac.uk/pdbsum/7sp1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7sp1 ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Disease == | |||
[https://www.uniprot.org/uniprot/TAU_HUMAN TAU_HUMAN] Note=In Alzheimer disease, the neuronal cytoskeleton in the brain is progressively disrupted and replaced by tangles of paired helical filaments (PHF) and straight filaments, mainly composed of hyperphosphorylated forms of TAU (PHF-TAU or AD P-TAU). O-GlcNAcylation is greatly reduced in Alzheimer disease brain cerebral cortex leading to an increase in TAU/MAPT phosphorylations.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> Defects in MAPT are a cause of frontotemporal dementia (FTD) [MIM:[https://omim.org/entry/600274 600274]; also called frontotemporal dementia (FTD), pallido-ponto-nigral degeneration (PPND) or historically termed Pick complex. This form of frontotemporal dementia is characterized by presenile dementia with behavioral changes, deterioration of cognitive capacities and loss of memory. In some cases, parkinsonian symptoms are prominent. Neuropathological changes include frontotemporal atrophy often associated with atrophy of the basal ganglia, substantia nigra, amygdala. In most cases, protein tau deposits are found in glial cells and/or neurons.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> <ref>PMID:9629852</ref> <ref>PMID:9736786</ref> <ref>PMID:9641683</ref> <ref>PMID:9789048</ref> <ref>PMID:9973279</ref> <ref>PMID:10553987</ref> <ref>PMID:10214944</ref> <ref>PMID:10374757</ref> <ref>PMID:10489057</ref> <ref>PMID:10208578</ref> <ref>PMID:11117541</ref> <ref>PMID:10802785</ref> <ref>PMID:11071507</ref> <ref>PMID:11585254</ref> <ref>PMID:11278002</ref> <ref>PMID:12473774</ref> <ref>PMID:11921059</ref> <ref>PMID:11906000</ref> <ref>PMID:11889249</ref> <ref>PMID:12509859</ref> <ref>PMID:16240366</ref> <ref>PMID:15883319</ref> Defects in MAPT are a cause of Pick disease of the brain (PIDB) [MIM:[https://omim.org/entry/172700 172700]. It is a rare form of dementia pathologically defined by severe atrophy, neuronal loss and gliosis. It is characterized by the occurrence of tau-positive inclusions, swollen neurons (Pick cells) and argentophilic neuronal inclusions known as Pick bodies that disproportionally affect the frontal and temporal cortical regions. Clinical features include aphasia, apraxia, confusion, anomia, memory loss and personality deterioration.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> <ref>PMID:10604746</ref> <ref>PMID:11117542</ref> <ref>PMID:11089577</ref> <ref>PMID:11601501</ref> <ref>PMID:11891833</ref> Note=Defects in MAPT are a cause of corticobasal degeneration (CBD). It is marked by extrapyramidal signs and apraxia and can be associated with memory loss. Neuropathologic features may overlap Alzheimer disease, progressive supranuclear palsy, and Parkinson disease.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> Defects in MAPT are a cause of progressive supranuclear palsy type 1 (PSNP1) [MIM:[https://omim.org/entry/601104 601104]; also abbreviated as PSP and also known as Steele-Richardson-Olszewski syndrome. PSNP1 is characterized by akinetic-rigid syndrome, supranuclear gaze palsy, pyramidal tract dysfunction, pseudobulbar signs and cognitive capacities deterioration. Neurofibrillary tangles and gliosis but no amyloid plaques are found in diseased brains. Most cases appear to be sporadic, with a significant association with a common haplotype including the MAPT gene and the flanking regions. Familial cases show an autosomal dominant pattern of transmission with incomplete penetrance; genetic analysis of a few cases showed the occurrence of tau mutations, including a deletion of Asn-613.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> <ref>PMID:10534245</ref> <ref>PMID:11220749</ref> <ref>PMID:12325083</ref> <ref>PMID:14991829</ref> <ref>PMID:14991828</ref> <ref>PMID:16157753</ref> Defects in MAPT are a cause of Parkinson-dementia syndrome (PARDE) [MIM:[https://omim.org/entry/260540 260540]. A syndrome characterized by parkinsonism tremor, rigidity, dementia, ophthalmoparesis and pyramidal signs. Neurofibrillary degeneration occurs in the hippocampus, basal ganglia and brainstem nuclei.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/TAU_HUMAN TAU_HUMAN] Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization.<ref>PMID:21985311</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
In neurodegenerative diseases including Alzheimer's and amyotrophic lateral sclerosis, proteins that bind RNA are found in aggregated forms in autopsied brains. Evidence suggests that RNA aids nucleation of these pathological aggregates; however, the mechanism has not been investigated at the level of atomic structure. Here, we present the 3.4-A resolution structure of fibrils of full-length recombinant tau protein in the presence of RNA, determined by electron cryomicroscopy (cryo-EM). The structure reveals the familiar in-register cross-beta amyloid scaffold but with a small fibril core spanning residues Glu391 to Ala426, a region disordered in the fuzzy coat in all previously studied tau polymorphs. RNA is bound on the fibril surface to the positively charged residues Arg406 and His407 and runs parallel to the fibril axis. The fibrils dissolve when RNase is added, showing that RNA is necessary for fibril integrity. While this structure cannot exist simultaneously with the tau fibril structures extracted from patients' brains, it could conceivably account for the nucleating effects of RNA cofactors followed by remodeling as fibrils mature. | |||
Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation.,Abskharon R, Sawaya MR, Boyer DR, Cao Q, Nguyen BA, Cascio D, Eisenberg DS Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2119952119. doi: , 10.1073/pnas.2119952119. Epub 2022 Apr 4. PMID:35377792<ref>PMID:35377792</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7sp1" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Microtubule-associated protein 3D structures|Microtubule-associated protein 3D structures]] | |||
*[[Tau protein 3D structures|Tau protein 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Mus]] | ||
[[Category: Abskharon R]] | |||
[[Category: Boyer DR]] | |||
[[Category: Eisenberg DS]] | |||
[[Category: Sawaya MR]] |
Latest revision as of 08:52, 5 June 2024
RNA-induced tau amyloid fibrilRNA-induced tau amyloid fibril
Structural highlights
DiseaseTAU_HUMAN Note=In Alzheimer disease, the neuronal cytoskeleton in the brain is progressively disrupted and replaced by tangles of paired helical filaments (PHF) and straight filaments, mainly composed of hyperphosphorylated forms of TAU (PHF-TAU or AD P-TAU). O-GlcNAcylation is greatly reduced in Alzheimer disease brain cerebral cortex leading to an increase in TAU/MAPT phosphorylations.[1] [2] [3] Defects in MAPT are a cause of frontotemporal dementia (FTD) [MIM:600274; also called frontotemporal dementia (FTD), pallido-ponto-nigral degeneration (PPND) or historically termed Pick complex. This form of frontotemporal dementia is characterized by presenile dementia with behavioral changes, deterioration of cognitive capacities and loss of memory. In some cases, parkinsonian symptoms are prominent. Neuropathological changes include frontotemporal atrophy often associated with atrophy of the basal ganglia, substantia nigra, amygdala. In most cases, protein tau deposits are found in glial cells and/or neurons.[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] Defects in MAPT are a cause of Pick disease of the brain (PIDB) [MIM:172700. It is a rare form of dementia pathologically defined by severe atrophy, neuronal loss and gliosis. It is characterized by the occurrence of tau-positive inclusions, swollen neurons (Pick cells) and argentophilic neuronal inclusions known as Pick bodies that disproportionally affect the frontal and temporal cortical regions. Clinical features include aphasia, apraxia, confusion, anomia, memory loss and personality deterioration.[29] [30] [31] [32] [33] [34] [35] [36] Note=Defects in MAPT are a cause of corticobasal degeneration (CBD). It is marked by extrapyramidal signs and apraxia and can be associated with memory loss. Neuropathologic features may overlap Alzheimer disease, progressive supranuclear palsy, and Parkinson disease.[37] [38] [39] Defects in MAPT are a cause of progressive supranuclear palsy type 1 (PSNP1) [MIM:601104; also abbreviated as PSP and also known as Steele-Richardson-Olszewski syndrome. PSNP1 is characterized by akinetic-rigid syndrome, supranuclear gaze palsy, pyramidal tract dysfunction, pseudobulbar signs and cognitive capacities deterioration. Neurofibrillary tangles and gliosis but no amyloid plaques are found in diseased brains. Most cases appear to be sporadic, with a significant association with a common haplotype including the MAPT gene and the flanking regions. Familial cases show an autosomal dominant pattern of transmission with incomplete penetrance; genetic analysis of a few cases showed the occurrence of tau mutations, including a deletion of Asn-613.[40] [41] [42] [43] [44] [45] [46] [47] [48] Defects in MAPT are a cause of Parkinson-dementia syndrome (PARDE) [MIM:260540. A syndrome characterized by parkinsonism tremor, rigidity, dementia, ophthalmoparesis and pyramidal signs. Neurofibrillary degeneration occurs in the hippocampus, basal ganglia and brainstem nuclei.[49] [50] [51] FunctionTAU_HUMAN Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization.[52] Publication Abstract from PubMedIn neurodegenerative diseases including Alzheimer's and amyotrophic lateral sclerosis, proteins that bind RNA are found in aggregated forms in autopsied brains. Evidence suggests that RNA aids nucleation of these pathological aggregates; however, the mechanism has not been investigated at the level of atomic structure. Here, we present the 3.4-A resolution structure of fibrils of full-length recombinant tau protein in the presence of RNA, determined by electron cryomicroscopy (cryo-EM). The structure reveals the familiar in-register cross-beta amyloid scaffold but with a small fibril core spanning residues Glu391 to Ala426, a region disordered in the fuzzy coat in all previously studied tau polymorphs. RNA is bound on the fibril surface to the positively charged residues Arg406 and His407 and runs parallel to the fibril axis. The fibrils dissolve when RNase is added, showing that RNA is necessary for fibril integrity. While this structure cannot exist simultaneously with the tau fibril structures extracted from patients' brains, it could conceivably account for the nucleating effects of RNA cofactors followed by remodeling as fibrils mature. Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation.,Abskharon R, Sawaya MR, Boyer DR, Cao Q, Nguyen BA, Cascio D, Eisenberg DS Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2119952119. doi: , 10.1073/pnas.2119952119. Epub 2022 Apr 4. PMID:35377792[53] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|