7oh3: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==== | ==Nog1-TAP associated immature ribosomal particle population B from S. cerevisiae== | ||
<StructureSection load='7oh3' size='340' side='right'caption='[[7oh3]]' scene=''> | <StructureSection load='7oh3' size='340' side='right'caption='[[7oh3]], [[Resolution|resolution]] 3.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br> | <table><tr><td colspan='2'>[[7oh3]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7OH3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7OH3 FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7oh3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7oh3 OCA], [https://pdbe.org/7oh3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7oh3 RCSB], [https://www.ebi.ac.uk/pdbsum/7oh3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7oh3 ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.4Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7oh3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7oh3 OCA], [https://pdbe.org/7oh3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7oh3 RCSB], [https://www.ebi.ac.uk/pdbsum/7oh3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7oh3 ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/CGR1_YEAST CGR1_YEAST] Involved in nucleolar integrity and required for processing of the pre-rRNA for the 60S ribosome subunit.<ref>PMID:11116400</ref> <ref>PMID:11932453</ref> <ref>PMID:16544271</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), rpL25 (uL23) and rpL34 (eL34) for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits. | |||
Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors.,Poll G, Pilsl M, Griesenbeck J, Tschochner H, Milkereit P PLoS One. 2021 Nov 23;16(11):e0252497. doi: 10.1371/journal.pone.0252497. , eCollection 2021. PMID:34813592<ref>PMID:34813592</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7oh3" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[GTP-binding protein 3D structures|GTP-binding protein 3D structures]] | |||
*[[Ribosome 3D structures|Ribosome 3D structures]] | |||
*[[Ribosome biogenesis protein 3D structures|Ribosome biogenesis protein 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Saccharomyces cerevisiae S288C]] | ||
[[Category: Milkereit P]] | |||
[[Category: Poell G]] |
Latest revision as of 12:01, 14 July 2024
Nog1-TAP associated immature ribosomal particle population B from S. cerevisiaeNog1-TAP associated immature ribosomal particle population B from S. cerevisiae
Structural highlights
FunctionCGR1_YEAST Involved in nucleolar integrity and required for processing of the pre-rRNA for the 60S ribosome subunit.[1] [2] [3] Publication Abstract from PubMedIn yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), rpL25 (uL23) and rpL34 (eL34) for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits. Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors.,Poll G, Pilsl M, Griesenbeck J, Tschochner H, Milkereit P PLoS One. 2021 Nov 23;16(11):e0252497. doi: 10.1371/journal.pone.0252497. , eCollection 2021. PMID:34813592[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|