7oh3: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:


====
==Nog1-TAP associated immature ribosomal particle population B from S. cerevisiae==
<StructureSection load='7oh3' size='340' side='right'caption='[[7oh3]]' scene=''>
<StructureSection load='7oh3' size='340' side='right'caption='[[7oh3]], [[Resolution|resolution]] 3.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br>
<table><tr><td colspan='2'>[[7oh3]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7OH3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7OH3 FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7oh3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7oh3 OCA], [https://pdbe.org/7oh3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7oh3 RCSB], [https://www.ebi.ac.uk/pdbsum/7oh3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7oh3 ProSAT]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.4&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7oh3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7oh3 OCA], [https://pdbe.org/7oh3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7oh3 RCSB], [https://www.ebi.ac.uk/pdbsum/7oh3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7oh3 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/CGR1_YEAST CGR1_YEAST] Involved in nucleolar integrity and required for processing of the pre-rRNA for the 60S ribosome subunit.<ref>PMID:11116400</ref> <ref>PMID:11932453</ref> <ref>PMID:16544271</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), rpL25 (uL23) and rpL34 (eL34) for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.
Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors.,Poll G, Pilsl M, Griesenbeck J, Tschochner H, Milkereit P PLoS One. 2021 Nov 23;16(11):e0252497. doi: 10.1371/journal.pone.0252497. , eCollection 2021. PMID:34813592<ref>PMID:34813592</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 7oh3" style="background-color:#fffaf0;"></div>
==See Also==
*[[GTP-binding protein 3D structures|GTP-binding protein 3D structures]]
*[[Ribosome 3D structures|Ribosome 3D structures]]
*[[Ribosome biogenesis protein 3D structures|Ribosome biogenesis protein 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Z-disk]]
[[Category: Saccharomyces cerevisiae S288C]]
[[Category: Milkereit P]]
[[Category: Poell G]]

Latest revision as of 12:01, 14 July 2024

Nog1-TAP associated immature ribosomal particle population B from S. cerevisiaeNog1-TAP associated immature ribosomal particle population B from S. cerevisiae

Structural highlights

7oh3 is a 10 chain structure with sequence from Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.4Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CGR1_YEAST Involved in nucleolar integrity and required for processing of the pre-rRNA for the 60S ribosome subunit.[1] [2] [3]

Publication Abstract from PubMed

In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), rpL25 (uL23) and rpL34 (eL34) for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.

Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors.,Poll G, Pilsl M, Griesenbeck J, Tschochner H, Milkereit P PLoS One. 2021 Nov 23;16(11):e0252497. doi: 10.1371/journal.pone.0252497. , eCollection 2021. PMID:34813592[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sun J, McFarland M, Boettner D, Panepinto J, Rhodes JC, Askew DS. Cgr1p, a novel nucleolar protein encoded by Saccharomyces cerevisiae orf YGL0292w. Curr Microbiol. 2001 Jan;42(1):65-9. PMID:11116400
  2. Moy TI, Boettner D, Rhodes JC, Silver PA, Askew DS. Identification of a role for Saccharomyces cerevisiae Cgr1p in pre-rRNA processing and 60S ribosome subunit synthesis. Microbiology. 2002 Apr;148(Pt 4):1081-90. PMID:11932453
  3. Wade CH, Umbarger MA, McAlear MA. The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast. 2006 Mar;23(4):293-306. PMID:16544271 doi:http://dx.doi.org/10.1002/yea.1353
  4. Pöll G, Pilsl M, Griesenbeck J, Tschochner H, Milkereit P. Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors. PLoS One. 2021 Nov 23;16(11):e0252497. PMID:34813592 doi:10.1371/journal.pone.0252497

7oh3, resolution 3.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA