7crr: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==== | ==Native NSD3 bound to 187-bp nucleosome== | ||
<StructureSection load='7crr' size='340' side='right'caption='[[7crr]]' scene=''> | <StructureSection load='7crr' size='340' side='right'caption='[[7crr]], [[Resolution|resolution]] 3.48Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br> | <table><tr><td colspan='2'>[[7crr]] is a 11 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens], [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis], [https://en.wikipedia.org/wiki/Xenopus_tropicalis Xenopus tropicalis] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7CRR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7CRR FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7crr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7crr OCA], [https://pdbe.org/7crr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7crr RCSB], [https://www.ebi.ac.uk/pdbsum/7crr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7crr ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.48Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NLE:NORLEUCINE'>NLE</scene>, <scene name='pdbligand=SAM:S-ADENOSYLMETHIONINE'>SAM</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7crr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7crr OCA], [https://pdbe.org/7crr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7crr RCSB], [https://www.ebi.ac.uk/pdbsum/7crr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7crr ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/Q92133_XENLA Q92133_XENLA] | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Histone methyltransferases of the nuclear receptor-binding SET domain protein (NSD) family, including NSD1, NSD2 and NSD3, have crucial roles in chromatin regulation and are implicated in oncogenesis(1,2). NSD enzymes exhibit an autoinhibitory state that is relieved by binding to nucleosomes, enabling dimethylation of histone H3 at Lys36 (H3K36)(3-7). However, the molecular basis that underlies this mechanism is largely unknown. Here we solve the cryo-electron microscopy structures of NSD2 and NSD3 bound to mononucleosomes. We find that binding of NSD2 and NSD3 to mononucleosomes causes DNA near the linker region to unwrap, which facilitates insertion of the catalytic core between the histone octamer and the unwrapped segment of DNA. A network of DNA- and histone-specific contacts between NSD2 or NSD3 and the nucleosome precisely defines the position of the enzyme on the nucleosome, explaining the specificity of methylation to H3K36. Intermolecular contacts between NSD proteins and nucleosomes are altered by several recurrent cancer-associated mutations in NSD2 and NSD3. NSDs that contain these mutations are catalytically hyperactive in vitro and in cells, and their ectopic expression promotes the proliferation of cancer cells and the growth of xenograft tumours. Together, our research provides molecular insights into the nucleosome-based recognition and histone-modification mechanisms of NSD2 and NSD3, which could lead to strategies for therapeutic targeting of proteins of the NSD family. | |||
Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases.,Li W, Tian W, Yuan G, Deng P, Sengupta D, Cheng Z, Cao Y, Ren J, Qin Y, Zhou Y, Jia Y, Gozani O, Patel DJ, Wang Z Nature. 2021 Feb;590(7846):498-503. doi: 10.1038/s41586-020-03069-8. Epub 2020 , Dec 23. PMID:33361816<ref>PMID:33361816</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7crr" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Histone 3D structures|Histone 3D structures]] | |||
*[[Histone methyltransferase 3D structures|Histone methyltransferase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Z | [[Category: Synthetic construct]] | ||
[[Category: Xenopus laevis]] | |||
[[Category: Xenopus tropicalis]] | |||
[[Category: Deng P]] | |||
[[Category: Gozani O]] | |||
[[Category: Li W]] | |||
[[Category: Patel D]] | |||
[[Category: Tian W]] | |||
[[Category: Wang Z]] | |||
[[Category: Yuan G]] |