|
|
Line 1: |
Line 1: |
|
| |
|
| ==Trypanosoma brucei F1-ATPase== | | ==Trypanosoma brucei F1-ATPase== |
| <StructureSection load='6f5d' size='340' side='right' caption='[[6f5d]], [[Resolution|resolution]] 3.20Å' scene=''> | | <StructureSection load='6f5d' size='340' side='right'caption='[[6f5d]], [[Resolution|resolution]] 3.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
| <table><tr><td colspan='2'>[[6f5d]] is a 12 chain structure with sequence from [http://en.wikipedia.org/wiki/Trypanosoma_brucei_brucei Trypanosoma brucei brucei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6F5D OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6F5D FirstGlance]. <br> | | <table><tr><td colspan='2'>[[6f5d]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Trypanosoma_brucei_brucei Trypanosoma brucei brucei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6F5D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6F5D FirstGlance]. <br> |
| </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.2Å</td></tr> |
| <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=UNK:UNKNOWN'>UNK</scene></td></tr> | | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
| <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr>
| | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6f5d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6f5d OCA], [https://pdbe.org/6f5d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6f5d RCSB], [https://www.ebi.ac.uk/pdbsum/6f5d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6f5d ProSAT]</span></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6f5d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6f5d OCA], [http://pdbe.org/6f5d PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6f5d RCSB], [http://www.ebi.ac.uk/pdbsum/6f5d PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6f5d ProSAT]</span></td></tr> | |
| </table> | | </table> |
| == Function == | | == Function == |
| [[http://www.uniprot.org/uniprot/ATP18_TRYBB ATP18_TRYBB]] Mitochondrial membrane ATP synthase (F(1)F(o) ATP synthase) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:19436713, PubMed:29247468). F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(o) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk (PubMed:19436713, PubMed:29247468, PubMed:29440423). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1) (PubMed:19436713, PubMed:29440423). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits (Probable). Contrary to the procyclic, insect form that requires F(1)F(o) ATP synthase for ATP synthesis, the bloodstream form relies on ATP hydrolysis by F(1)F(o) ATP synthase to maintain its mitochondrial membrane potential (PubMed:29247468).<ref>PMID:19436713</ref> <ref>PMID:29247468</ref> <ref>PMID:29440423</ref> [[http://www.uniprot.org/uniprot/ATPD_TRYBB ATPD_TRYBB]] Mitochondrial membrane ATP synthase (F(1)F(o) ATP synthase) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:19436713, PubMed:29247468). F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(o) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk (PubMed:19436713, PubMed:29247468, PubMed:29440423). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1) (PubMed:19436713, PubMed:29440423). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits (Probable). Contrary to the procyclic, insect form that requires F(1)F(o) ATP synthase for ATP synthesis, the bloodstream form relies on ATP hydrolysis by F(1)F(o) ATP synthase to maintain its mitochondrial membrane potential (PubMed:29247468).<ref>PMID:19436713</ref> <ref>PMID:29247468</ref> <ref>PMID:29440423</ref> [[http://www.uniprot.org/uniprot/ATPA_TRYBB ATPA_TRYBB]] Mitochondrial membrane ATP synthase (F(1)F(o) ATP synthase) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:19436713, PubMed:29247468). F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(o) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk (PubMed:19436713, PubMed:29247468, PubMed:29440423). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1) (PubMed:19436713, PubMed:29440423). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits (Probable). Subunit alpha does not bear the catalytic high-affinity ATP-binding sites (PubMed:29440423). Contrary to the procyclic, insect form that requires F(1)F(o) ATP synthase for ATP synthesis, the bloodstream form relies on ATP hydrolysis by F(1)F(o) ATP synthase to maintain its mitochondrial membrane potential (PubMed:29247468).<ref>PMID:19436713</ref> <ref>PMID:29247468</ref> <ref>PMID:29440423</ref> [[http://www.uniprot.org/uniprot/ATPB_TRYBB ATPB_TRYBB]] Mitochondrial membrane ATP synthase (F(1)F(o) ATP synthase) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:19436713, PubMed:29247468). F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(o) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk (PubMed:19436713, PubMed:29247468, PubMed:29440423). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1) (PubMed:19436713, PubMed:29440423). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits (Probable). Contrary to the procyclic, insect form that requires F(1)F(o) ATP synthase for ATP synthesis, the bloodstream form relies on ATP hydrolysis by F(1)F(o) ATP synthase to maintain its mitochondrial membrane potential (PubMed:29247468).<ref>PMID:19436713</ref> <ref>PMID:29247468</ref> <ref>PMID:29440423</ref> [[http://www.uniprot.org/uniprot/ATP5E_TRYBB ATP5E_TRYBB]] Mitochondrial membrane ATP synthase (F(1)F(o) ATP synthase) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:19436713, PubMed:29247468). F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(o) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk (PubMed:19436713, PubMed:29247468, PubMed:29440423). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1) (PubMed:19436713, PubMed:29440423). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits (Probable). Contrary to the procyclic, insect form that requires F(1)F(o) ATP synthase for ATP synthesis, the bloodstream form relies on ATP hydrolysis by F(1)F(o) ATP synthase to maintain its mitochondrial membrane potential (PubMed:29247468).<ref>PMID:19436713</ref> <ref>PMID:29247468</ref> <ref>PMID:29440423</ref> | | [https://www.uniprot.org/uniprot/Q57TX9_TRYB2 Q57TX9_TRYB2] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 21: |
|
| |
|
| ==See Also== | | ==See Also== |
| *[[ATPase|ATPase]] | | *[[ATPase 3D structures|ATPase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| | [[Category: Large Structures]] |
| [[Category: Trypanosoma brucei brucei]] | | [[Category: Trypanosoma brucei brucei]] |
| [[Category: Gahura, O]] | | [[Category: Gahura O]] |
| [[Category: Leslie, A G.W]] | | [[Category: Leslie AGW]] |
| [[Category: Montgomery, M G]] | | [[Category: Montgomery MG]] |
| [[Category: Walker, J E]] | | [[Category: Walker JE]] |
| [[Category: Zikova, A]] | | [[Category: Zikova A]] |
| [[Category: Atp synthase]]
| |
| [[Category: Hydrolase]]
| |
| [[Category: Mitochondria]]
| |
| [[Category: P18]]
| |
| [[Category: Trypanosoma brucei]]
| |