4ls9: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4ls9]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycolicibacterium_smegmatis_MC2_155 Mycolicibacterium smegmatis MC2 155]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4LS9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4LS9 FirstGlance]. <br> | <table><tr><td colspan='2'>[[4ls9]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycolicibacterium_smegmatis_MC2_155 Mycolicibacterium smegmatis MC2 155]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4LS9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4LS9 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ls9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ls9 OCA], [https://pdbe.org/4ls9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ls9 RCSB], [https://www.ebi.ac.uk/pdbsum/4ls9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ls9 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ls9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ls9 OCA], [https://pdbe.org/4ls9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ls9 RCSB], [https://www.ebi.ac.uk/pdbsum/4ls9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ls9 ProSAT]</span></td></tr> | ||
</table> | </table> |
Latest revision as of 13:14, 30 October 2024
Structure of mycobacterial nrnA homolog reveals multifunctional nuclease activitiesStructure of mycobacterial nrnA homolog reveals multifunctional nuclease activities
Structural highlights
FunctionPublication Abstract from PubMedDHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-A resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3'-5' exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress. Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases.,Srivastav R, Kumar D, Grover A, Singh A, Manjasetty BA, Sharma R, Taneja B Nucleic Acids Res. 2014 Aug 1;42(12):7894-910. doi: 10.1093/nar/gku425. Epub 2014, May 30. PMID:24878921[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|