3utx: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='3utx' size='340' side='right'caption='[[3utx]], [[Resolution|resolution]] 2.47Å' scene=''> | <StructureSection load='3utx' size='340' side='right'caption='[[3utx]], [[Resolution|resolution]] 2.47Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3utx]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3utx]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Halobacterium_salinarum_NRC-1 Halobacterium salinarum NRC-1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UTX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UTX FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.47Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=D12:DODECANE'>D12</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3utx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3utx OCA], [https://pdbe.org/3utx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3utx RCSB], [https://www.ebi.ac.uk/pdbsum/3utx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3utx ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3utx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3utx OCA], [https://pdbe.org/3utx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3utx RCSB], [https://www.ebi.ac.uk/pdbsum/3utx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3utx ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/BACR_HALSA BACR_HALSA] Light-driven proton pump. | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 27: | Line 26: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Halobacterium salinarum NRC-1]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Bowie | [[Category: Bowie JU]] | ||
[[Category: Cao | [[Category: Cao Z]] | ||
Latest revision as of 12:46, 30 October 2024
Crystal structure of bacteriorhodopsin mutant T46ACrystal structure of bacteriorhodopsin mutant T46A
Structural highlights
FunctionBACR_HALSA Light-driven proton pump. Publication Abstract from PubMedThe intricate functions of membrane proteins would not be possible without bends or breaks that are remarkably common in transmembrane helices. The frequent helix distortions are nevertheless surprising because backbone hydrogen bonds should be strong in an apolar membrane, potentially rigidifying helices. It is therefore mysterious how distortions can be generated by the evolutionary currency of random point mutations. Here we show that we can engineer a transition between distinct distorted helix conformations in bacteriorhodopsin with a single-point mutation. Moreover, we estimate the energetic cost of the conformational transitions to be smaller than 1 kcal/mol. We propose that the low energy of distortion is explained in part by the shifting of backbone hydrogen bonding partners. Consistent with this view, extensive backbone hydrogen bond shifts occur during helix conformational changes that accompany functional cycles. Our results explain how evolution has been able to liberally exploit transmembrane helix bending for the optimization of membrane protein structure, function, and dynamics. Shifting hydrogen bonds may produce flexible transmembrane helices.,Cao Z, Bowie JU Proc Natl Acad Sci U S A. 2012 May 22;109(21):8121-6. Epub 2012 May 7. PMID:22566663[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|