3e64: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='3e64' size='340' side='right'caption='[[3e64]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
<StructureSection load='3e64' size='340' side='right'caption='[[3e64]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3e64]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3E64 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3E64 FirstGlance]. <br>
<table><tr><td colspan='2'>[[3e64]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3E64 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3E64 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=5B3:4-(3-AMINO-1H-INDAZOL-5-YL)-N-TERT-BUTYLBENZENESULFONAMIDE'>5B3</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=5B3:4-(3-AMINO-1H-INDAZOL-5-YL)-N-TERT-BUTYLBENZENESULFONAMIDE'>5B3</scene>, <scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3e62|3e62]], [[3e63|3e63]]</div></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">JAK2 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3e64 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3e64 OCA], [https://pdbe.org/3e64 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3e64 RCSB], [https://www.ebi.ac.uk/pdbsum/3e64 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3e64 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3e64 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3e64 OCA], [https://pdbe.org/3e64 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3e64 RCSB], [https://www.ebi.ac.uk/pdbsum/3e64 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3e64 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[https://www.uniprot.org/uniprot/JAK2_HUMAN JAK2_HUMAN]] Note=Chromosomal aberrations involving JAK2 are found in both chronic and acute forms of eosinophilic, lymphoblastic and myeloid leukemia. Translocation t(8;9)(p22;p24) with PCM1 links the protein kinase domain of JAK2 to the major portion of PCM1. Translocation t(9;12)(p24;p13) with ETV6.  Defects in JAK2 are a cause of susceptibility to Budd-Chiari syndrome (BDCHS) [MIM:[https://omim.org/entry/600880 600880]]. A syndrome caused by obstruction of hepatic venous outflow involving either the hepatic veins or the terminal segment of the inferior vena cava. Obstructions are generally caused by thrombosis and lead to hepatic congestion and ischemic necrosis. Clinical manifestations observed in the majority of patients include hepatomegaly, right upper quadrant pain and abdominal ascites. Budd-Chiari syndrome is associated with a combination of disease states including primary myeloproliferative syndromes and thrombophilia due to factor V Leiden, protein C deficiency and antithrombin III deficiency. Budd-Chiari syndrome is a rare but typical complication in patients with polycythemia vera.  Defects in JAK2 are a cause of polycythemia vera (PV) [MIM:[https://omim.org/entry/263300 263300]]. A myeloproliferative disorder characterized by abnormal proliferation of all hematopoietic bone marrow elements, erythroid hyperplasia, an absolute increase in total blood volume, but also by myeloid leukocytosis, thrombocytosis and splenomegaly.<ref>PMID:15781101</ref> <ref>PMID:15793561</ref> <ref>PMID:15858187</ref> <ref>PMID:16603627</ref>  Defects in JAK2 gene may be the cause of thrombocythemia type 3 (THCYT3) [MIM:[https://omim.org/entry/614521 614521]]. A myeloproliferative disorder characterized by elevated platelet levels due to sustained proliferation of megakaryocytes, and frequently lead to thrombotic and haemorrhagic complications.<ref>PMID:16325696</ref> <ref>PMID:22397670</ref>  Defects in JAK2 are a cause of myelofibrosis (MYELOF) [MIM:[https://omim.org/entry/254450 254450]]. Myelofibrosis is a disorder characterized by replacement of the bone marrow by fibrous tissue, occurring in association with a myeloproliferative disorder. Clinical manifestations may include anemia, pallor, splenomegaly, hypermetabolic state, petechiae, ecchymosis, bleeding, lymphadenopathy, hepatomegaly, portal hypertension.  Defects in JAK2 are a cause of acute myelogenous leukemia (AML) [MIM:[https://omim.org/entry/601626 601626]]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.<ref>PMID:16247455</ref>
[https://www.uniprot.org/uniprot/JAK2_HUMAN JAK2_HUMAN] Note=Chromosomal aberrations involving JAK2 are found in both chronic and acute forms of eosinophilic, lymphoblastic and myeloid leukemia. Translocation t(8;9)(p22;p24) with PCM1 links the protein kinase domain of JAK2 to the major portion of PCM1. Translocation t(9;12)(p24;p13) with ETV6.  Defects in JAK2 are a cause of susceptibility to Budd-Chiari syndrome (BDCHS) [MIM:[https://omim.org/entry/600880 600880]. A syndrome caused by obstruction of hepatic venous outflow involving either the hepatic veins or the terminal segment of the inferior vena cava. Obstructions are generally caused by thrombosis and lead to hepatic congestion and ischemic necrosis. Clinical manifestations observed in the majority of patients include hepatomegaly, right upper quadrant pain and abdominal ascites. Budd-Chiari syndrome is associated with a combination of disease states including primary myeloproliferative syndromes and thrombophilia due to factor V Leiden, protein C deficiency and antithrombin III deficiency. Budd-Chiari syndrome is a rare but typical complication in patients with polycythemia vera.  Defects in JAK2 are a cause of polycythemia vera (PV) [MIM:[https://omim.org/entry/263300 263300]. A myeloproliferative disorder characterized by abnormal proliferation of all hematopoietic bone marrow elements, erythroid hyperplasia, an absolute increase in total blood volume, but also by myeloid leukocytosis, thrombocytosis and splenomegaly.<ref>PMID:15781101</ref> <ref>PMID:15793561</ref> <ref>PMID:15858187</ref> <ref>PMID:16603627</ref>  Defects in JAK2 gene may be the cause of thrombocythemia type 3 (THCYT3) [MIM:[https://omim.org/entry/614521 614521]. A myeloproliferative disorder characterized by elevated platelet levels due to sustained proliferation of megakaryocytes, and frequently lead to thrombotic and haemorrhagic complications.<ref>PMID:16325696</ref> <ref>PMID:22397670</ref>  Defects in JAK2 are a cause of myelofibrosis (MYELOF) [MIM:[https://omim.org/entry/254450 254450]. Myelofibrosis is a disorder characterized by replacement of the bone marrow by fibrous tissue, occurring in association with a myeloproliferative disorder. Clinical manifestations may include anemia, pallor, splenomegaly, hypermetabolic state, petechiae, ecchymosis, bleeding, lymphadenopathy, hepatomegaly, portal hypertension.  Defects in JAK2 are a cause of acute myelogenous leukemia (AML) [MIM:[https://omim.org/entry/601626 601626]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.<ref>PMID:16247455</ref>  
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/JAK2_HUMAN JAK2_HUMAN]] Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin (THPO); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins. Following ligand-binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins. Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, cell stimulation with erythropoietin (EPO) during erythropoiesis leads to JAK2 autophosphorylation, activation, and its association with erythropoietin receptor (EPOR) that becomes phosphorylated in its cytoplasmic domain. Then, STAT5 (STAT5A or STAT5B) is recruited, phosphorylated and activated by JAK2. Once activated, dimerized STAT5 translocates into the nucleus and promotes the transcription of several essential genes involved in the modulation of erythropoiesis. In addition, JAK2 mediates angiotensin-2-induced ARHGEF1 phosphorylation. Plays a role in cell cycle by phosphorylating CDKN1B. Cooperates with TEC through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. In the nucleus, plays a key role in chromatin by specifically mediating phosphorylation of 'Tyr-41' of histone H3 (H3Y41ph), a specific tag that promotes exclusion of CBX5 (HP1 alpha) from chromatin.<ref>PMID:12023369</ref> <ref>PMID:19783980</ref> <ref>PMID:20098430</ref> <ref>PMID:21423214</ref>
[https://www.uniprot.org/uniprot/JAK2_HUMAN JAK2_HUMAN] Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin (THPO); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins. Following ligand-binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins. Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, cell stimulation with erythropoietin (EPO) during erythropoiesis leads to JAK2 autophosphorylation, activation, and its association with erythropoietin receptor (EPOR) that becomes phosphorylated in its cytoplasmic domain. Then, STAT5 (STAT5A or STAT5B) is recruited, phosphorylated and activated by JAK2. Once activated, dimerized STAT5 translocates into the nucleus and promotes the transcription of several essential genes involved in the modulation of erythropoiesis. In addition, JAK2 mediates angiotensin-2-induced ARHGEF1 phosphorylation. Plays a role in cell cycle by phosphorylating CDKN1B. Cooperates with TEC through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. In the nucleus, plays a key role in chromatin by specifically mediating phosphorylation of 'Tyr-41' of histone H3 (H3Y41ph), a specific tag that promotes exclusion of CBX5 (HP1 alpha) from chromatin.<ref>PMID:12023369</ref> <ref>PMID:19783980</ref> <ref>PMID:20098430</ref> <ref>PMID:21423214</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 20: Line 17:
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/e6/3e64_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/e6/3e64_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
Line 41: Line 38:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Non-specific protein-tyrosine kinase]]
[[Category: Antonysamy S]]
[[Category: Antonysamy, S]]
[[Category: Fang W]]
[[Category: Fang, W]]
[[Category: Hirst G]]
[[Category: Hirst, G]]
[[Category: Park F]]
[[Category: Park, F]]
[[Category: Russell M]]
[[Category: Russell, M]]
[[Category: Smyth L]]
[[Category: Smyth, L]]
[[Category: Sprengeler P]]
[[Category: Sprengeler, P]]
[[Category: Stappenbeck F]]
[[Category: Stappenbeck, F]]
[[Category: Steensma R]]
[[Category: Steensma, R]]
[[Category: Thompson DA]]
[[Category: Thompson, D A]]
[[Category: Wilson M]]
[[Category: Wilson, M]]
[[Category: Wong M]]
[[Category: Wong, M]]
[[Category: Zhang A]]
[[Category: Zhang, A]]
[[Category: Zhang F]]
[[Category: Zhang, F]]
[[Category: Atp-binding]]
[[Category: Disease mutation]]
[[Category: Drug discovery]]
[[Category: Fragment based]]
[[Category: Jak2]]
[[Category: Kinase]]
[[Category: Membrane]]
[[Category: Nucleotide-binding]]
[[Category: Phosphoprotein]]
[[Category: Proto-oncogene]]
[[Category: Sh2 domain]]
[[Category: Transferase]]
[[Category: Tyrosine-protein kinase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA