1tin: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1tin]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Cucurbita_maxima Cucurbita maxima]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1TIN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1TIN FirstGlance]. <br> | <table><tr><td colspan='2'>[[1tin]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Cucurbita_maxima Cucurbita maxima]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1TIN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1TIN FirstGlance]. <br> | ||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 1 model</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene></td></tr> | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1tin FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1tin OCA], [https://pdbe.org/1tin PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1tin RCSB], [https://www.ebi.ac.uk/pdbsum/1tin PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1tin ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1tin FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1tin OCA], [https://pdbe.org/1tin PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1tin RCSB], [https://www.ebi.ac.uk/pdbsum/1tin PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1tin ProSAT]</span></td></tr> | ||
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ti/1tin_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ti/1tin_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1tin ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1tin ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The solution structure of Cucurbita maxima trypsin inhibitor-V (CMTI-V), which is also a specific inhibitor of the blood coagulation protein, factor XIIa, was determined by 1H NMR spectroscopy in combination with a distance-geometry and simulated annealing algorithm. Sequence-specific resonance assignments were made for all the main-chain and most of the side-chain hydrogens. Stereospecific assignments were also made for some of the beta-, gamma-, delta-, and epsilon-hydrogens and valine methyl hydrogens. The ring conformations of all six prolines in the inhibitor were determined on the basis of 1H-1H vicinal coupling constant patterns; most of the proline ring hydrogens were stereospecifically assigned on the basis of vicinal coupling constant and intraresidue nuclear Overhauser effect (NOE) patterns. Distance constraints were determined on the basis of NOEs between pairs of hydrogens. Dihedral angle constraints were determined from estimates of scalar coupling constants and intraresidue NOEs. On the basis of 727 interproton distance and 111 torsion angle constraints, which included backbone phi angles and side-chain chi 1, chi 2, chi 3, and chi 4 angles, 22 structures were calculated by a distance geometry algorithm and refined by energy minimization and simulated annealing methods. Both main-chain and side-chain atoms are well-defined, except for a loop region, two terminal residues, and some side-chain atoms located on the molecular surface. The average root mean squared deviation in the position for equivalent atoms between the 22 individual structures and the mean structure obtained by averaging their coordinates is 0.58 +/- 0.06 A for the main-chain atoms and 1.01 +/- 0.07 A for all the non-hydrogen atoms of residues 3-40 and 49-67. These structures were compared to the X-ray crystallographic structure of another protein of the same inhibitor family-chymotrypsin inhibitor-2 from barley seeds [CI-2; McPhalen, C. A., & James, M. N. G. (1987) Biochemistry 26, 261-269]. The main-chain folding patterns are highly similar for the two proteins, which possess 62% sequence differences. However, major differences are noted in the N- and C-terminal segments, which may be due to the presence of a disulfide bridge in CMTI-V, but not in CI-2. | |||
Three-dimensional solution structure of Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy.,Cai M, Gong Y, Kao JL, Krishnamoorthi R Biochemistry. 1995 Apr 18;34(15):5201-11. PMID:7711040<ref>PMID:7711040</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1tin" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Trypsin inhibitor 3D structures|Trypsin inhibitor 3D structures]] | *[[Trypsin inhibitor 3D structures|Trypsin inhibitor 3D structures]] | ||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Latest revision as of 03:31, 21 November 2024
THREE-DIMENSIONAL STRUCTURE IN SOLUTION OF CUCURBITA MAXIMA TRYPSIN INHIBITOR-V DETERMINED BY NMR SPECTROSCOPYTHREE-DIMENSIONAL STRUCTURE IN SOLUTION OF CUCURBITA MAXIMA TRYPSIN INHIBITOR-V DETERMINED BY NMR SPECTROSCOPY
Structural highlights
FunctionITH5_CUCMA Specifically inhibits both trypsin and activated Hageman factor. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe solution structure of Cucurbita maxima trypsin inhibitor-V (CMTI-V), which is also a specific inhibitor of the blood coagulation protein, factor XIIa, was determined by 1H NMR spectroscopy in combination with a distance-geometry and simulated annealing algorithm. Sequence-specific resonance assignments were made for all the main-chain and most of the side-chain hydrogens. Stereospecific assignments were also made for some of the beta-, gamma-, delta-, and epsilon-hydrogens and valine methyl hydrogens. The ring conformations of all six prolines in the inhibitor were determined on the basis of 1H-1H vicinal coupling constant patterns; most of the proline ring hydrogens were stereospecifically assigned on the basis of vicinal coupling constant and intraresidue nuclear Overhauser effect (NOE) patterns. Distance constraints were determined on the basis of NOEs between pairs of hydrogens. Dihedral angle constraints were determined from estimates of scalar coupling constants and intraresidue NOEs. On the basis of 727 interproton distance and 111 torsion angle constraints, which included backbone phi angles and side-chain chi 1, chi 2, chi 3, and chi 4 angles, 22 structures were calculated by a distance geometry algorithm and refined by energy minimization and simulated annealing methods. Both main-chain and side-chain atoms are well-defined, except for a loop region, two terminal residues, and some side-chain atoms located on the molecular surface. The average root mean squared deviation in the position for equivalent atoms between the 22 individual structures and the mean structure obtained by averaging their coordinates is 0.58 +/- 0.06 A for the main-chain atoms and 1.01 +/- 0.07 A for all the non-hydrogen atoms of residues 3-40 and 49-67. These structures were compared to the X-ray crystallographic structure of another protein of the same inhibitor family-chymotrypsin inhibitor-2 from barley seeds [CI-2; McPhalen, C. A., & James, M. N. G. (1987) Biochemistry 26, 261-269]. The main-chain folding patterns are highly similar for the two proteins, which possess 62% sequence differences. However, major differences are noted in the N- and C-terminal segments, which may be due to the presence of a disulfide bridge in CMTI-V, but not in CI-2. Three-dimensional solution structure of Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy.,Cai M, Gong Y, Kao JL, Krishnamoorthi R Biochemistry. 1995 Apr 18;34(15):5201-11. PMID:7711040[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|