1htp: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ht/1htp_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ht/1htp_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> |
Latest revision as of 09:43, 30 October 2024
REFINED STRUCTURES AT 2 ANGSTROMS AND 2.2 ANGSTROMS OF THE TWO FORMS OF THE H-PROTEIN, A LIPOAMIDE-CONTAINING PROTEIN OF THE GLYCINE DECARBOXYLASE COMPLEXREFINED STRUCTURES AT 2 ANGSTROMS AND 2.2 ANGSTROMS OF THE TWO FORMS OF THE H-PROTEIN, A LIPOAMIDE-CONTAINING PROTEIN OF THE GLYCINE DECARBOXYLASE COMPLEX
Structural highlights
FunctionGCSH_PEA The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedGlycine decarboxylase consists of four protein components. Its structural and mechanistic heart is provided by the lipoic acid-containing H-protein which undergoes a cycle of reductive methylamination, methylamine transfer and electron transfer. Lipoic acid attached to a specific lysine side chain is assumed to act as a 'swinging arm' conveying the reactive dithiolane ring from one catalytic centre to another. The X-ray crystal structures of two forms of the H-protein have been determined. The lipoate cofactor is located in the loop of a hairpin configuration but following methylamine transfer it is pivoted to bind into a cleft at the surface of the H-protein. The lipoamide-methylamine arm is, therefore, not free to move in aqueous solvent. The lipoamide arm in the glycine decarboxylase complex is not freely swinging.,Cohen-Addad C, Pares S, Sieker L, Neuburger M, Douce R Nat Struct Biol. 1995 Jan;2(1):63-8. PMID:7719855[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|