1ewr: Difference between revisions

No edit summary
No edit summary
 
Line 15: Line 15:
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ew/1ewr_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ew/1ewr_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ewr ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ewr ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
DNA mismatch repair is critical for increasing replication fidelity in organisms ranging from bacteria to humans. MutS protein, a member of the ABC ATPase superfamily, recognizes mispaired and unpaired bases in duplex DNA and initiates mismatch repair. Mutations in human MutS genes cause a predisposition to hereditary nonpolyposis colorectal cancer as well as sporadic tumours. Here we report the crystal structures of a MutS protein and a complex of MutS with a heteroduplex DNA containing an unpaired base. The structures reveal the general architecture of members of the MutS family, an induced-fit mechanism of recognition between four domains of a MutS dimer and a heteroduplex kinked at the mismatch, a composite ATPase active site composed of residues from both MutS subunits, and a transmitter region connecting the mismatch-binding and ATPase domains. The crystal structures also provide a molecular framework for understanding hereditary nonpolyposis colorectal cancer mutations and for postulating testable roles of MutS.
Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA.,Obmolova G, Ban C, Hsieh P, Yang W Nature. 2000 Oct 12;407(6805):703-10. PMID:11048710<ref>PMID:11048710</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1ewr" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[DNA mismatch repair protein 3D structures|DNA mismatch repair protein 3D structures]]
*[[DNA mismatch repair protein 3D structures|DNA mismatch repair protein 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA