1dbi: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/db/1dbi_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/db/1dbi_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dbi ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dbi ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Proteins of the subtilisin superfamily (subtilases) are widely distributed through many living species, where they perform a variety of processing functions. They are also used extensively in industry. In many of these enzymes, bound calcium ions play a key role in protecting against autolysis and thermal denaturation. We have determined the crystal structure of a highly thermostable protease from Bacillus sp. Ak.1 that is strongly stabilized by calcium. The crystal structure, determined at 1.8 A resolution (R=0. 182, Rfree=0.247), reveals the presence of four bound cations, three Ca(2+) and one Na(+). Two of the Ca(2+) binding sites, Ca-1 and Ca-2, correspond to sites also found in thermitase and the mesophilic subtilisins. The third calcium ion, however, is at a novel site that is created by two key amino acid substitutions near Ca-1, and has not been observed in any other subtilase. This site, acting cooperatively with Ca-1, appears to give substantially enhanced thermostability, compared with thermitase. Comparisons with the mesophilic subtilisins also point to the importance of aromatic clusters, reduced hydrophobic surface and constrained N and C termini in enhancing the thermostability of thermitase and Ak.1 protease. The Ak.1 protease also contains an unusual Cys-X-Cys disulfide bridge that modifies the active site cleft geometry. | |||
Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution.,Smith CA, Toogood HS, Baker HM, Daniel RM, Baker EN J Mol Biol. 1999 Dec 10;294(4):1027-40. PMID:10588904<ref>PMID:10588904</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1dbi" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Proteinase 3D structures|Proteinase 3D structures]] | *[[Proteinase 3D structures|Proteinase 3D structures]] | ||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |