1ahe: Difference between revisions
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ahe ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ahe ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Mutation of six residues of Escherichia coli aspartate aminotransferase results in substantial acquisition of the transamination properties of tyrosine amino-transferase without loss of aspartate transaminase activity. X-ray crystallographic analysis of key inhibitor complexes of the hexamutant reveals the structural basis for this substrate selectivity. It appears that tyrosine aminotransferase achieves nearly equal affinities for a wide range of amino acids by an unusual conformational switch. An active-site arginine residue either shifts its position to electrostatically interact with charged substrates or moves aside to allow access of aromatic ligands. | |||
Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase.,Malashkevich VN, Onuffer JJ, Kirsch JF, Jansonius JN Nat Struct Biol. 1995 Jul;2(7):548-53. PMID:7664122<ref>PMID:7664122</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1ahe" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Aspartate aminotransferase 3D structures|Aspartate aminotransferase 3D structures]] | *[[Aspartate aminotransferase 3D structures|Aspartate aminotransferase 3D structures]] | ||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Latest revision as of 08:24, 5 June 2024
ASPARTATE AMINOTRANSFERASE HEXAMUTANTASPARTATE AMINOTRANSFERASE HEXAMUTANT
Structural highlights
FunctionEvolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedMutation of six residues of Escherichia coli aspartate aminotransferase results in substantial acquisition of the transamination properties of tyrosine amino-transferase without loss of aspartate transaminase activity. X-ray crystallographic analysis of key inhibitor complexes of the hexamutant reveals the structural basis for this substrate selectivity. It appears that tyrosine aminotransferase achieves nearly equal affinities for a wide range of amino acids by an unusual conformational switch. An active-site arginine residue either shifts its position to electrostatically interact with charged substrates or moves aside to allow access of aromatic ligands. Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase.,Malashkevich VN, Onuffer JJ, Kirsch JF, Jansonius JN Nat Struct Biol. 1995 Jul;2(7):548-53. PMID:7664122[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|