1ma3: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ma3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ma3 OCA], [https://pdbe.org/1ma3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ma3 RCSB], [https://www.ebi.ac.uk/pdbsum/1ma3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ma3 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ma3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ma3 OCA], [https://pdbe.org/1ma3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ma3 RCSB], [https://www.ebi.ac.uk/pdbsum/1ma3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ma3 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/NPD2_ARCFU NPD2_ARCFU] NAD-dependent protein deacetylase which modulates the activities of several enzymes which are inactive in their acetylated form. Deacetylates the N-terminal lysine residue of Alba, the major archaeal chromatin protein and that, in turn, increases Alba's DNA binding affinity, thereby repressing transcription (By similarity).[HAMAP-Rule:MF_01121]
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 15: Line 13:
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ma/1ma3_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ma/1ma3_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ma3 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ma3 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Sir2 proteins are NAD(+)-dependent protein deacetylases that play key roles in transcriptional regulation, DNA repair, and life span regulation. The structure of an archaeal Sir2 enzyme, Sir2-Af2, bound to an acetylated p53 peptide reveals that the substrate binds in a cleft in the enzyme, forming an enzyme-substrate beta sheet with two flanking strands in Sir2-Af2. The acetyl-lysine inserts into a conserved hydrophobic tunnel that contains the active site histidine. Comparison with other structures of Sir2 enzymes suggests that the apoenzyme undergoes a conformational change upon substrate binding. Based on the Sir2-Af2 substrate complex structure, mutations were made in the other A. fulgidus sirtuin, Sir2-Af1, that increased its affinity for the p53 peptide.
Structure of a Sir2 enzyme bound to an acetylated p53 peptide.,Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C Mol Cell. 2002 Sep;10(3):523-35. PMID:12408821<ref>PMID:12408821</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1ma3" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Latest revision as of 03:14, 21 November 2024

Structure of a Sir2 enzyme bound to an acetylated p53 peptideStructure of a Sir2 enzyme bound to an acetylated p53 peptide

Structural highlights

1ma3 is a 2 chain structure with sequence from Archaeoglobus fulgidus and Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Sir2 proteins are NAD(+)-dependent protein deacetylases that play key roles in transcriptional regulation, DNA repair, and life span regulation. The structure of an archaeal Sir2 enzyme, Sir2-Af2, bound to an acetylated p53 peptide reveals that the substrate binds in a cleft in the enzyme, forming an enzyme-substrate beta sheet with two flanking strands in Sir2-Af2. The acetyl-lysine inserts into a conserved hydrophobic tunnel that contains the active site histidine. Comparison with other structures of Sir2 enzymes suggests that the apoenzyme undergoes a conformational change upon substrate binding. Based on the Sir2-Af2 substrate complex structure, mutations were made in the other A. fulgidus sirtuin, Sir2-Af1, that increased its affinity for the p53 peptide.

Structure of a Sir2 enzyme bound to an acetylated p53 peptide.,Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C Mol Cell. 2002 Sep;10(3):523-35. PMID:12408821[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell. 2002 Sep;10(3):523-35. PMID:12408821

1ma3, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA