7m9c: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==== | ==ADP-AlF3 bound TnsC structure in open form== | ||
<StructureSection load='7m9c' size='340' side='right'caption='[[7m9c]]' scene=''> | <StructureSection load='7m9c' size='340' side='right'caption='[[7m9c]], [[Resolution|resolution]] 4.20Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br> | <table><tr><td colspan='2'>[[7m9c]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Scytonema_hofmannii Scytonema hofmannii] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7M9C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7M9C FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7m9c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7m9c OCA], [https://pdbe.org/7m9c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7m9c RCSB], [https://www.ebi.ac.uk/pdbsum/7m9c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7m9c ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.2Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7m9c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7m9c OCA], [https://pdbe.org/7m9c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7m9c RCSB], [https://www.ebi.ac.uk/pdbsum/7m9c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7m9c ProSAT]</span></td></tr> | |||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
CRISPR-associated transposition systems allow guide RNA-directed integration of a single DNA cargo in one orientation at a fixed distance from a programmable target sequence. We used cryo-electron microscopy (cryo-EM) to define the mechanism that underlies this process by characterizing the transposition regulator, TnsC, from a type V-K CRISPR-transposase system. In this scenario, polymerization of adenosine triphosphate-bound TnsC helical filaments could explain how polarity information is passed to the transposase. TniQ caps the TnsC filament, representing a universal mechanism for target information transfer in Tn7/Tn7-like elements. Transposase-driven disassembly establishes delivery of the element only to unused protospacers. Finally, TnsC transitions to define the fixed point of insertion, as revealed by structures with the transition state mimic ADP*AlF(3) These mechanistic findings provide the underpinnings for engineering CRISPR-associated transposition systems for research and therapeutic applications. | |||
Structural basis for target site selection in RNA-guided DNA transposition systems.,Park JU, Tsai AW, Mehrotra E, Petassi MT, Hsieh SC, Ke A, Peters JE, Kellogg EH Science. 2021 Aug 13;373(6556):768-774. doi: 10.1126/science.abi8976. Epub 2021 , Jul 15. PMID:34385391<ref>PMID:34385391</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7m9c" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Transposase 3D structures|Transposase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Scytonema hofmannii]] | ||
[[Category: Synthetic construct]] | |||
[[Category: Kellogg EH]] | |||
[[Category: Mehrotra E]] | |||
[[Category: Park J]] | |||
[[Category: Tsai AWL]] |
Latest revision as of 22:39, 29 May 2024
ADP-AlF3 bound TnsC structure in open formADP-AlF3 bound TnsC structure in open form
Structural highlights
Publication Abstract from PubMedCRISPR-associated transposition systems allow guide RNA-directed integration of a single DNA cargo in one orientation at a fixed distance from a programmable target sequence. We used cryo-electron microscopy (cryo-EM) to define the mechanism that underlies this process by characterizing the transposition regulator, TnsC, from a type V-K CRISPR-transposase system. In this scenario, polymerization of adenosine triphosphate-bound TnsC helical filaments could explain how polarity information is passed to the transposase. TniQ caps the TnsC filament, representing a universal mechanism for target information transfer in Tn7/Tn7-like elements. Transposase-driven disassembly establishes delivery of the element only to unused protospacers. Finally, TnsC transitions to define the fixed point of insertion, as revealed by structures with the transition state mimic ADP*AlF(3) These mechanistic findings provide the underpinnings for engineering CRISPR-associated transposition systems for research and therapeutic applications. Structural basis for target site selection in RNA-guided DNA transposition systems.,Park JU, Tsai AW, Mehrotra E, Petassi MT, Hsieh SC, Ke A, Peters JE, Kellogg EH Science. 2021 Aug 13;373(6556):768-774. doi: 10.1126/science.abi8976. Epub 2021 , Jul 15. PMID:34385391[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|