6y2l: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:


==Structure of human ribosome in POST state==
==Structure of human ribosome in POST state==
<StructureSection load='6y2l' size='340' side='right'caption='[[6y2l]]' scene=''>
<StructureSection load='6y2l' size='340' side='right'caption='[[6y2l]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6Y2L OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6Y2L FirstGlance]. <br>
<table><tr><td colspan='2'>[[6y2l]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6Y2L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6Y2L FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6y2l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6y2l OCA], [http://pdbe.org/6y2l PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6y2l RCSB], [http://www.ebi.ac.uk/pdbsum/6y2l PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6y2l ProSAT]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3HE:4-{(2R)-2-[(1S,3S,5S)-3,5-DIMETHYL-2-OXOCYCLOHEXYL]-2-HYDROXYETHYL}PIPERIDINE-2,6-DIONE'>3HE</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6y2l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6y2l OCA], [https://pdbe.org/6y2l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6y2l RCSB], [https://www.ebi.ac.uk/pdbsum/6y2l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6y2l ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RL9_HUMAN RL9_HUMAN]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Ribosomes undergo multiple conformational transitions during translation elongation. Here, we report the high-resolution cryoelectron microscopy (cryo-EM) structure of the human 80S ribosome in the post-decoding pre-translocation state (classical-PRE) at 3.3-A resolution along with the rotated (hybrid-PRE) and the post-translocation states (POST). The classical-PRE state ribosome structure reveals a previously unobserved interaction between the C-terminal region of the conserved ribosomal protein uS19 and the A- and P-site tRNAs and the mRNA in the decoding site. In addition to changes in the inter-subunit bridges, analysis of different ribosomal conformations reveals the dynamic nature of this domain and suggests a role in tRNA accommodation and translocation during elongation. Furthermore, we show that disease-associated mutations in uS19 result in increased frameshifting. Together, this structure-function analysis provides mechanistic insights into the role of the uS19 C-terminal tail in the context of mammalian ribosomes.
Dynamics of uS19 C-Terminal Tail during the Translation Elongation Cycle in Human Ribosomes.,Bhaskar V, Graff-Meyer A, Schenk AD, Cavadini S, von Loeffelholz O, Natchiar SK, Artus-Revel CG, Hotz HR, Bretones G, Klaholz BP, Chao JA Cell Rep. 2020 Apr 7;31(1):107473. doi: 10.1016/j.celrep.2020.03.037. PMID:32268098<ref>PMID:32268098</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6y2l" style="background-color:#fffaf0;"></div>
==See Also==
*[[Ribosome 3D structures|Ribosome 3D structures]]
*[[3D sructureseceptor for activated protein kinase C 1|3D sructureseceptor for activated protein kinase C 1]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Bhaskar V]]
[[Category: Bhaskar V]]

Latest revision as of 13:20, 22 May 2024

Structure of human ribosome in POST stateStructure of human ribosome in POST state

Structural highlights

6y2l is a 10 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RL9_HUMAN

Publication Abstract from PubMed

Ribosomes undergo multiple conformational transitions during translation elongation. Here, we report the high-resolution cryoelectron microscopy (cryo-EM) structure of the human 80S ribosome in the post-decoding pre-translocation state (classical-PRE) at 3.3-A resolution along with the rotated (hybrid-PRE) and the post-translocation states (POST). The classical-PRE state ribosome structure reveals a previously unobserved interaction between the C-terminal region of the conserved ribosomal protein uS19 and the A- and P-site tRNAs and the mRNA in the decoding site. In addition to changes in the inter-subunit bridges, analysis of different ribosomal conformations reveals the dynamic nature of this domain and suggests a role in tRNA accommodation and translocation during elongation. Furthermore, we show that disease-associated mutations in uS19 result in increased frameshifting. Together, this structure-function analysis provides mechanistic insights into the role of the uS19 C-terminal tail in the context of mammalian ribosomes.

Dynamics of uS19 C-Terminal Tail during the Translation Elongation Cycle in Human Ribosomes.,Bhaskar V, Graff-Meyer A, Schenk AD, Cavadini S, von Loeffelholz O, Natchiar SK, Artus-Revel CG, Hotz HR, Bretones G, Klaholz BP, Chao JA Cell Rep. 2020 Apr 7;31(1):107473. doi: 10.1016/j.celrep.2020.03.037. PMID:32268098[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Bhaskar V, Graff-Meyer A, Schenk AD, Cavadini S, von Loeffelholz O, Natchiar SK, Artus-Revel CG, Hotz HR, Bretones G, Klaholz BP, Chao JA. Dynamics of uS19 C-Terminal Tail during the Translation Elongation Cycle in Human Ribosomes. Cell Rep. 2020 Apr 7;31(1):107473. doi: 10.1016/j.celrep.2020.03.037. PMID:32268098 doi:http://dx.doi.org/10.1016/j.celrep.2020.03.037

6y2l, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA